Cargando…

Automated Classification and Segmentation in Colorectal Images Based on Self-Paced Transfer Network

Colorectal imaging improves on diagnosis of colorectal diseases by providing colorectal images. Manual diagnosis of colorectal disease is labor-intensive and time-consuming. In this paper, we present a method for automatic colorectal disease classification and segmentation. Because of label unbalanc...

Descripción completa

Detalles Bibliográficos
Autores principales: Yao, Yao, Gou, Shuiping, Tian, Ru, Zhang, Xiangrong, He, Shuixiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7843175/
https://www.ncbi.nlm.nih.gov/pubmed/33542924
http://dx.doi.org/10.1155/2021/6683931
Descripción
Sumario:Colorectal imaging improves on diagnosis of colorectal diseases by providing colorectal images. Manual diagnosis of colorectal disease is labor-intensive and time-consuming. In this paper, we present a method for automatic colorectal disease classification and segmentation. Because of label unbalanced and difficult colorectal data, the classification based on self-paced transfer VGG network (STVGG) is proposed. ImageNet pretraining network parameters are transferred to VGG network with training colorectal data to acquire good initial network performance. And self-paced learning is used to optimize the network so that the classification performance of label unbalanced and difficult samples is improved. In order to assist the colonoscopist to accurately determine whether the polyp needs surgical resection, feature of trained STVGG model is shared to Unet segmentation network as the encoder part and to avoid repeat learning of polyp segmentation model. The experimental results on 3061 colorectal images illustrated that the proposed method obtained higher classification accuracy (96%) and segmentation performance compared with a few other methods. The polyp can be segmented accurately from around tissues by the proposed method. The segmentation results underpin the potential of deep learning methods for assisting colonoscopist in identifying polyps and enabling timely resection of these polyps at an early stage.