Cargando…
Lessons From Deep Neural Networks for Studying the Coding Principles of Biological Neural Networks
One of the central goals in systems neuroscience is to understand how information is encoded in the brain, and the standard approach is to identify the relation between a stimulus and a neural response. However, the feature of a stimulus is typically defined by the researcher's hypothesis, whic...
Autores principales: | Bae, Hyojin, Kim, Sang Jeong, Kim, Chang-Eop |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7843526/ https://www.ncbi.nlm.nih.gov/pubmed/33519390 http://dx.doi.org/10.3389/fnsys.2020.615129 |
Ejemplares similares
-
Erratum: Lessons From Deep Neural Networks for Studying the Coding Principles of Biological Neural Networks
por: Frontiers Production Office,
Publicado: (2022) -
Hierarchical Sparse Coding of Objects in Deep Convolutional Neural Networks
por: Liu, Xingyu, et al.
Publicado: (2020) -
Cerebellum as a kernel machine: A novel perspective on expansion recoding in granule cell layer
por: Bae, Hyojin, et al.
Publicado: (2022) -
Energy efficiency and coding of neural network
por: Li, Shengnan, et al.
Publicado: (2023) -
Distinctive properties of biological neural networks and recent advances in bottom-up approaches toward a better biologically plausible neural network
por: Jeon, Ikhwan, et al.
Publicado: (2023)