Cargando…

A patient-centric dataset of images and metadata for identifying melanomas using clinical context

Prior skin image datasets have not addressed patient-level information obtained from multiple skin lesions from the same patient. Though artificial intelligence classification algorithms have achieved expert-level performance in controlled studies examining single images, in practice dermatologists...

Descripción completa

Detalles Bibliográficos
Autores principales: Rotemberg, Veronica, Kurtansky, Nicholas, Betz-Stablein, Brigid, Caffery, Liam, Chousakos, Emmanouil, Codella, Noel, Combalia, Marc, Dusza, Stephen, Guitera, Pascale, Gutman, David, Halpern, Allan, Helba, Brian, Kittler, Harald, Kose, Kivanc, Langer, Steve, Lioprys, Konstantinos, Malvehy, Josep, Musthaq, Shenara, Nanda, Jabpani, Reiter, Ofer, Shih, George, Stratigos, Alexander, Tschandl, Philipp, Weber, Jochen, Soyer, H. Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7843971/
https://www.ncbi.nlm.nih.gov/pubmed/33510154
http://dx.doi.org/10.1038/s41597-021-00815-z
_version_ 1783644237218185216
author Rotemberg, Veronica
Kurtansky, Nicholas
Betz-Stablein, Brigid
Caffery, Liam
Chousakos, Emmanouil
Codella, Noel
Combalia, Marc
Dusza, Stephen
Guitera, Pascale
Gutman, David
Halpern, Allan
Helba, Brian
Kittler, Harald
Kose, Kivanc
Langer, Steve
Lioprys, Konstantinos
Malvehy, Josep
Musthaq, Shenara
Nanda, Jabpani
Reiter, Ofer
Shih, George
Stratigos, Alexander
Tschandl, Philipp
Weber, Jochen
Soyer, H. Peter
author_facet Rotemberg, Veronica
Kurtansky, Nicholas
Betz-Stablein, Brigid
Caffery, Liam
Chousakos, Emmanouil
Codella, Noel
Combalia, Marc
Dusza, Stephen
Guitera, Pascale
Gutman, David
Halpern, Allan
Helba, Brian
Kittler, Harald
Kose, Kivanc
Langer, Steve
Lioprys, Konstantinos
Malvehy, Josep
Musthaq, Shenara
Nanda, Jabpani
Reiter, Ofer
Shih, George
Stratigos, Alexander
Tschandl, Philipp
Weber, Jochen
Soyer, H. Peter
author_sort Rotemberg, Veronica
collection PubMed
description Prior skin image datasets have not addressed patient-level information obtained from multiple skin lesions from the same patient. Though artificial intelligence classification algorithms have achieved expert-level performance in controlled studies examining single images, in practice dermatologists base their judgment holistically from multiple lesions on the same patient. The 2020 SIIM-ISIC Melanoma Classification challenge dataset described herein was constructed to address this discrepancy between prior challenges and clinical practice, providing for each image in the dataset an identifier allowing lesions from the same patient to be mapped to one another. This patient-level contextual information is frequently used by clinicians to diagnose melanoma and is especially useful in ruling out false positives in patients with many atypical nevi. The dataset represents 2,056 patients (20.8% with at least one melanoma, 79.2% with zero melanomas) from three continents with an average of 16 lesions per patient, consisting of 33,126 dermoscopic images and 584 (1.8%) histopathologically confirmed melanomas compared with benign melanoma mimickers.
format Online
Article
Text
id pubmed-7843971
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-78439712021-02-08 A patient-centric dataset of images and metadata for identifying melanomas using clinical context Rotemberg, Veronica Kurtansky, Nicholas Betz-Stablein, Brigid Caffery, Liam Chousakos, Emmanouil Codella, Noel Combalia, Marc Dusza, Stephen Guitera, Pascale Gutman, David Halpern, Allan Helba, Brian Kittler, Harald Kose, Kivanc Langer, Steve Lioprys, Konstantinos Malvehy, Josep Musthaq, Shenara Nanda, Jabpani Reiter, Ofer Shih, George Stratigos, Alexander Tschandl, Philipp Weber, Jochen Soyer, H. Peter Sci Data Data Descriptor Prior skin image datasets have not addressed patient-level information obtained from multiple skin lesions from the same patient. Though artificial intelligence classification algorithms have achieved expert-level performance in controlled studies examining single images, in practice dermatologists base their judgment holistically from multiple lesions on the same patient. The 2020 SIIM-ISIC Melanoma Classification challenge dataset described herein was constructed to address this discrepancy between prior challenges and clinical practice, providing for each image in the dataset an identifier allowing lesions from the same patient to be mapped to one another. This patient-level contextual information is frequently used by clinicians to diagnose melanoma and is especially useful in ruling out false positives in patients with many atypical nevi. The dataset represents 2,056 patients (20.8% with at least one melanoma, 79.2% with zero melanomas) from three continents with an average of 16 lesions per patient, consisting of 33,126 dermoscopic images and 584 (1.8%) histopathologically confirmed melanomas compared with benign melanoma mimickers. Nature Publishing Group UK 2021-01-28 /pmc/articles/PMC7843971/ /pubmed/33510154 http://dx.doi.org/10.1038/s41597-021-00815-z Text en © The Author(s) 2021, corrected publication 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) applies to the metadata files associated with this article.
spellingShingle Data Descriptor
Rotemberg, Veronica
Kurtansky, Nicholas
Betz-Stablein, Brigid
Caffery, Liam
Chousakos, Emmanouil
Codella, Noel
Combalia, Marc
Dusza, Stephen
Guitera, Pascale
Gutman, David
Halpern, Allan
Helba, Brian
Kittler, Harald
Kose, Kivanc
Langer, Steve
Lioprys, Konstantinos
Malvehy, Josep
Musthaq, Shenara
Nanda, Jabpani
Reiter, Ofer
Shih, George
Stratigos, Alexander
Tschandl, Philipp
Weber, Jochen
Soyer, H. Peter
A patient-centric dataset of images and metadata for identifying melanomas using clinical context
title A patient-centric dataset of images and metadata for identifying melanomas using clinical context
title_full A patient-centric dataset of images and metadata for identifying melanomas using clinical context
title_fullStr A patient-centric dataset of images and metadata for identifying melanomas using clinical context
title_full_unstemmed A patient-centric dataset of images and metadata for identifying melanomas using clinical context
title_short A patient-centric dataset of images and metadata for identifying melanomas using clinical context
title_sort patient-centric dataset of images and metadata for identifying melanomas using clinical context
topic Data Descriptor
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7843971/
https://www.ncbi.nlm.nih.gov/pubmed/33510154
http://dx.doi.org/10.1038/s41597-021-00815-z
work_keys_str_mv AT rotembergveronica apatientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT kurtanskynicholas apatientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT betzstableinbrigid apatientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT cafferyliam apatientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT chousakosemmanouil apatientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT codellanoel apatientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT combaliamarc apatientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT duszastephen apatientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT guiterapascale apatientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT gutmandavid apatientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT halpernallan apatientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT helbabrian apatientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT kittlerharald apatientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT kosekivanc apatientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT langersteve apatientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT liopryskonstantinos apatientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT malvehyjosep apatientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT musthaqshenara apatientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT nandajabpani apatientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT reiterofer apatientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT shihgeorge apatientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT stratigosalexander apatientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT tschandlphilipp apatientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT weberjochen apatientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT soyerhpeter apatientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT rotembergveronica patientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT kurtanskynicholas patientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT betzstableinbrigid patientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT cafferyliam patientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT chousakosemmanouil patientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT codellanoel patientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT combaliamarc patientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT duszastephen patientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT guiterapascale patientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT gutmandavid patientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT halpernallan patientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT helbabrian patientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT kittlerharald patientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT kosekivanc patientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT langersteve patientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT liopryskonstantinos patientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT malvehyjosep patientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT musthaqshenara patientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT nandajabpani patientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT reiterofer patientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT shihgeorge patientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT stratigosalexander patientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT tschandlphilipp patientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT weberjochen patientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext
AT soyerhpeter patientcentricdatasetofimagesandmetadataforidentifyingmelanomasusingclinicalcontext