Cargando…
Brain-inspired spiking neural networks for decoding and understanding muscle activity and kinematics from electroencephalography signals during hand movements
Compared to the abilities of the animal brain, many Artificial Intelligence systems have limitations which emphasise the need for a Brain-Inspired Artificial Intelligence paradigm. This paper proposes a novel Brain-Inspired Spiking Neural Network (BI-SNN) model for incremental learning of spike sequ...
Autores principales: | Kumarasinghe, Kaushalya, Kasabov, Nikola, Taylor, Denise |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7844055/ https://www.ncbi.nlm.nih.gov/pubmed/33510245 http://dx.doi.org/10.1038/s41598-021-81805-4 |
Ejemplares similares
-
Characteristics of Kinematic Parameters in Decoding Intended Reaching Movements Using Electroencephalography (EEG)
por: Kim, Hyeonseok, et al.
Publicado: (2019) -
Neural decoding of expressive human movement from scalp electroencephalography (EEG)
por: Cruz-Garza, Jesus G., et al.
Publicado: (2014) -
Application of a Brain-Inspired Spiking Neural Network Architecture to Odor Data Classification
por: Vanarse, Anup, et al.
Publicado: (2020) -
Decoding intentions from movement kinematics
por: Cavallo, Andrea, et al.
Publicado: (2016) -
Deep Learning of Explainable EEG Patterns as Dynamic Spatiotemporal Clusters and Rules in a Brain-Inspired Spiking Neural Network
por: Doborjeh, Maryam, et al.
Publicado: (2021)