Cargando…
An antibonding valence band maximum enables defect-tolerant and stable GeSe photovoltaics
In lead–halide perovskites, antibonding states at the valence band maximum (VBM)—the result of Pb 6s-I 5p coupling—enable defect-tolerant properties; however, questions surrounding stability, and a reliance on lead, remain challenges for perovskite solar cells. Here, we report that binary GeSe has a...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7844217/ https://www.ncbi.nlm.nih.gov/pubmed/33510157 http://dx.doi.org/10.1038/s41467-021-20955-5 |
_version_ | 1783644298241114112 |
---|---|
author | Liu, Shun-Chang Dai, Chen-Min Min, Yimeng Hou, Yi Proppe, Andrew H. Zhou, Ying Chen, Chao Chen, Shiyou Tang, Jiang Xue, Ding-Jiang Sargent, Edward H. Hu, Jin-Song |
author_facet | Liu, Shun-Chang Dai, Chen-Min Min, Yimeng Hou, Yi Proppe, Andrew H. Zhou, Ying Chen, Chao Chen, Shiyou Tang, Jiang Xue, Ding-Jiang Sargent, Edward H. Hu, Jin-Song |
author_sort | Liu, Shun-Chang |
collection | PubMed |
description | In lead–halide perovskites, antibonding states at the valence band maximum (VBM)—the result of Pb 6s-I 5p coupling—enable defect-tolerant properties; however, questions surrounding stability, and a reliance on lead, remain challenges for perovskite solar cells. Here, we report that binary GeSe has a perovskite-like antibonding VBM arising from Ge 4s-Se 4p coupling; and that it exhibits similarly shallow bulk defects combined with high stability. We find that the deep defect density in bulk GeSe is ~10(12) cm(−3). We devise therefore a surface passivation strategy, and find that the resulting GeSe solar cells achieve a certified power conversion efficiency of 5.2%, 3.7 times higher than the best previously-reported GeSe photovoltaics. Unencapsulated devices show no efficiency loss after 12 months of storage in ambient conditions; 1100 hours under maximum power point tracking; a total ultraviolet irradiation dosage of 15 kWh m(−2); and 60 thermal cycles from −40 to 85 °C. |
format | Online Article Text |
id | pubmed-7844217 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-78442172021-02-08 An antibonding valence band maximum enables defect-tolerant and stable GeSe photovoltaics Liu, Shun-Chang Dai, Chen-Min Min, Yimeng Hou, Yi Proppe, Andrew H. Zhou, Ying Chen, Chao Chen, Shiyou Tang, Jiang Xue, Ding-Jiang Sargent, Edward H. Hu, Jin-Song Nat Commun Article In lead–halide perovskites, antibonding states at the valence band maximum (VBM)—the result of Pb 6s-I 5p coupling—enable defect-tolerant properties; however, questions surrounding stability, and a reliance on lead, remain challenges for perovskite solar cells. Here, we report that binary GeSe has a perovskite-like antibonding VBM arising from Ge 4s-Se 4p coupling; and that it exhibits similarly shallow bulk defects combined with high stability. We find that the deep defect density in bulk GeSe is ~10(12) cm(−3). We devise therefore a surface passivation strategy, and find that the resulting GeSe solar cells achieve a certified power conversion efficiency of 5.2%, 3.7 times higher than the best previously-reported GeSe photovoltaics. Unencapsulated devices show no efficiency loss after 12 months of storage in ambient conditions; 1100 hours under maximum power point tracking; a total ultraviolet irradiation dosage of 15 kWh m(−2); and 60 thermal cycles from −40 to 85 °C. Nature Publishing Group UK 2021-01-28 /pmc/articles/PMC7844217/ /pubmed/33510157 http://dx.doi.org/10.1038/s41467-021-20955-5 Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Liu, Shun-Chang Dai, Chen-Min Min, Yimeng Hou, Yi Proppe, Andrew H. Zhou, Ying Chen, Chao Chen, Shiyou Tang, Jiang Xue, Ding-Jiang Sargent, Edward H. Hu, Jin-Song An antibonding valence band maximum enables defect-tolerant and stable GeSe photovoltaics |
title | An antibonding valence band maximum enables defect-tolerant and stable GeSe photovoltaics |
title_full | An antibonding valence band maximum enables defect-tolerant and stable GeSe photovoltaics |
title_fullStr | An antibonding valence band maximum enables defect-tolerant and stable GeSe photovoltaics |
title_full_unstemmed | An antibonding valence band maximum enables defect-tolerant and stable GeSe photovoltaics |
title_short | An antibonding valence band maximum enables defect-tolerant and stable GeSe photovoltaics |
title_sort | antibonding valence band maximum enables defect-tolerant and stable gese photovoltaics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7844217/ https://www.ncbi.nlm.nih.gov/pubmed/33510157 http://dx.doi.org/10.1038/s41467-021-20955-5 |
work_keys_str_mv | AT liushunchang anantibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics AT daichenmin anantibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics AT minyimeng anantibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics AT houyi anantibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics AT proppeandrewh anantibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics AT zhouying anantibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics AT chenchao anantibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics AT chenshiyou anantibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics AT tangjiang anantibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics AT xuedingjiang anantibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics AT sargentedwardh anantibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics AT hujinsong anantibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics AT liushunchang antibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics AT daichenmin antibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics AT minyimeng antibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics AT houyi antibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics AT proppeandrewh antibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics AT zhouying antibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics AT chenchao antibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics AT chenshiyou antibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics AT tangjiang antibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics AT xuedingjiang antibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics AT sargentedwardh antibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics AT hujinsong antibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics |