Cargando…

An antibonding valence band maximum enables defect-tolerant and stable GeSe photovoltaics

In lead–halide perovskites, antibonding states at the valence band maximum (VBM)—the result of Pb 6s-I 5p coupling—enable defect-tolerant properties; however, questions surrounding stability, and a reliance on lead, remain challenges for perovskite solar cells. Here, we report that binary GeSe has a...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Shun-Chang, Dai, Chen-Min, Min, Yimeng, Hou, Yi, Proppe, Andrew H., Zhou, Ying, Chen, Chao, Chen, Shiyou, Tang, Jiang, Xue, Ding-Jiang, Sargent, Edward H., Hu, Jin-Song
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7844217/
https://www.ncbi.nlm.nih.gov/pubmed/33510157
http://dx.doi.org/10.1038/s41467-021-20955-5
_version_ 1783644298241114112
author Liu, Shun-Chang
Dai, Chen-Min
Min, Yimeng
Hou, Yi
Proppe, Andrew H.
Zhou, Ying
Chen, Chao
Chen, Shiyou
Tang, Jiang
Xue, Ding-Jiang
Sargent, Edward H.
Hu, Jin-Song
author_facet Liu, Shun-Chang
Dai, Chen-Min
Min, Yimeng
Hou, Yi
Proppe, Andrew H.
Zhou, Ying
Chen, Chao
Chen, Shiyou
Tang, Jiang
Xue, Ding-Jiang
Sargent, Edward H.
Hu, Jin-Song
author_sort Liu, Shun-Chang
collection PubMed
description In lead–halide perovskites, antibonding states at the valence band maximum (VBM)—the result of Pb 6s-I 5p coupling—enable defect-tolerant properties; however, questions surrounding stability, and a reliance on lead, remain challenges for perovskite solar cells. Here, we report that binary GeSe has a perovskite-like antibonding VBM arising from Ge 4s-Se 4p coupling; and that it exhibits similarly shallow bulk defects combined with high stability. We find that the deep defect density in bulk GeSe is ~10(12) cm(−3). We devise therefore a surface passivation strategy, and find that the resulting GeSe solar cells achieve a certified power conversion efficiency of 5.2%, 3.7 times higher than the best previously-reported GeSe photovoltaics. Unencapsulated devices show no efficiency loss after 12 months of storage in ambient conditions; 1100 hours under maximum power point tracking; a total ultraviolet irradiation dosage of 15 kWh m(−2); and 60 thermal cycles from −40 to 85 °C.
format Online
Article
Text
id pubmed-7844217
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-78442172021-02-08 An antibonding valence band maximum enables defect-tolerant and stable GeSe photovoltaics Liu, Shun-Chang Dai, Chen-Min Min, Yimeng Hou, Yi Proppe, Andrew H. Zhou, Ying Chen, Chao Chen, Shiyou Tang, Jiang Xue, Ding-Jiang Sargent, Edward H. Hu, Jin-Song Nat Commun Article In lead–halide perovskites, antibonding states at the valence band maximum (VBM)—the result of Pb 6s-I 5p coupling—enable defect-tolerant properties; however, questions surrounding stability, and a reliance on lead, remain challenges for perovskite solar cells. Here, we report that binary GeSe has a perovskite-like antibonding VBM arising from Ge 4s-Se 4p coupling; and that it exhibits similarly shallow bulk defects combined with high stability. We find that the deep defect density in bulk GeSe is ~10(12) cm(−3). We devise therefore a surface passivation strategy, and find that the resulting GeSe solar cells achieve a certified power conversion efficiency of 5.2%, 3.7 times higher than the best previously-reported GeSe photovoltaics. Unencapsulated devices show no efficiency loss after 12 months of storage in ambient conditions; 1100 hours under maximum power point tracking; a total ultraviolet irradiation dosage of 15 kWh m(−2); and 60 thermal cycles from −40 to 85 °C. Nature Publishing Group UK 2021-01-28 /pmc/articles/PMC7844217/ /pubmed/33510157 http://dx.doi.org/10.1038/s41467-021-20955-5 Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Liu, Shun-Chang
Dai, Chen-Min
Min, Yimeng
Hou, Yi
Proppe, Andrew H.
Zhou, Ying
Chen, Chao
Chen, Shiyou
Tang, Jiang
Xue, Ding-Jiang
Sargent, Edward H.
Hu, Jin-Song
An antibonding valence band maximum enables defect-tolerant and stable GeSe photovoltaics
title An antibonding valence band maximum enables defect-tolerant and stable GeSe photovoltaics
title_full An antibonding valence band maximum enables defect-tolerant and stable GeSe photovoltaics
title_fullStr An antibonding valence band maximum enables defect-tolerant and stable GeSe photovoltaics
title_full_unstemmed An antibonding valence band maximum enables defect-tolerant and stable GeSe photovoltaics
title_short An antibonding valence band maximum enables defect-tolerant and stable GeSe photovoltaics
title_sort antibonding valence band maximum enables defect-tolerant and stable gese photovoltaics
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7844217/
https://www.ncbi.nlm.nih.gov/pubmed/33510157
http://dx.doi.org/10.1038/s41467-021-20955-5
work_keys_str_mv AT liushunchang anantibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics
AT daichenmin anantibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics
AT minyimeng anantibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics
AT houyi anantibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics
AT proppeandrewh anantibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics
AT zhouying anantibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics
AT chenchao anantibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics
AT chenshiyou anantibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics
AT tangjiang anantibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics
AT xuedingjiang anantibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics
AT sargentedwardh anantibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics
AT hujinsong anantibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics
AT liushunchang antibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics
AT daichenmin antibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics
AT minyimeng antibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics
AT houyi antibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics
AT proppeandrewh antibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics
AT zhouying antibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics
AT chenchao antibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics
AT chenshiyou antibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics
AT tangjiang antibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics
AT xuedingjiang antibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics
AT sargentedwardh antibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics
AT hujinsong antibondingvalencebandmaximumenablesdefecttolerantandstablegesephotovoltaics