Cargando…
Src-mediated tyrosine phosphorylation of PRC1 and kinastrin/SKAP on the mitotic spindle
Src-family tyrosine kinases (SFKs) play important roles in a number of signal transduction events during mitosis, such as spindle formation. A relationship has been reported between SFKs and the mitotic spindle; however, the underlying mechanisms remain unclear. We herein demonstrated that SFKs accu...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7844303/ https://www.ncbi.nlm.nih.gov/pubmed/33510346 http://dx.doi.org/10.1038/s41598-021-82189-1 |
Sumario: | Src-family tyrosine kinases (SFKs) play important roles in a number of signal transduction events during mitosis, such as spindle formation. A relationship has been reported between SFKs and the mitotic spindle; however, the underlying mechanisms remain unclear. We herein demonstrated that SFKs accumulated in the centrosome region at the onset of mitosis. Centrosomal Fyn increased in the G(2) phase in a microtubule polymerization-dependent manner. A mass spectrometry analysis using mitotic spindle preparations was performed to identify tyrosine-phosphorylated substrates. Protein regulator of cytokinesis 1 (PRC1) and kinastrin/small kinetochore-associated protein (kinastrin/SKAP) were identified as SFK substrates. SFKs mainly phosphorylated PRC1 at Tyr-464 and kinastrin at Tyr-87. Although wild-type PRC1 is associated with microtubules, phosphomimetic PRC1 impaired the ability to bind microtubules. Phosphomimetic kinastrin at Tyr-87 also impaired binding with microtubules. Collectively, these results suggest that tyrosine phosphorylation of PRC1 and kinastrin plays a role in their delocalization from microtubules during mitosis. |
---|