Cargando…
Fertility preservation for pediatric male cancer patients: illustrating contemporary and future options; a case report
The main aim of current pediatric male fertility preservation programs is storing spermatogonia stem cell (SSC) prior to starting cancer treatment. From July 1st, 2014 to May 1st, 2020; 170 patients have been recruited in Wake Forest Testicular Tissue Banking Program. The existence of multiple testi...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7844490/ https://www.ncbi.nlm.nih.gov/pubmed/33532340 http://dx.doi.org/10.21037/tau-20-908 |
Sumario: | The main aim of current pediatric male fertility preservation programs is storing spermatogonia stem cell (SSC) prior to starting cancer treatment. From July 1st, 2014 to May 1st, 2020; 170 patients have been recruited in Wake Forest Testicular Tissue Banking Program. The existence of multiple testis biopsies in different time points and detailed histological analyses of a unique cancer patient, provided an educational opportunity to investigate testis condition in different phases of cancer management. A pediatric male cancer patient with B-cell acute lymphoblastic leukemia (ALL) had multiple testicular leukemia recurrences and went through several testicular biopsies, to identify leukemic infiltration as well as considering fertility preservation. Infiltration of leukemia cells into both testes was identified. Neither elongated spermatid nor sperm were detected, but germ cells including SSC, spermatocyte and round spermatid could be identified in the stored tissue even after initial cancer treatment. Different germ cells were identified by hematoxylin and eosin (H&E) staining and specific immunohistochemical (IHC) markers including PGP9.5/UCHL1 or MAGE-A4 (spermatogonia), SYCP3 (spermatocyte) and PRM1 (round spermatid). This emphasizes the importance of offering testicular biopsy to pediatric cancer patients at risk of infertility regardless to the stage of cancer treatment, although earlier biopsy is preferred. Promising research on in vitro spermatogenesis and auto-transplantation support the practice of SSC preservation. In addition, finding and storing round spermatids isolated from testicular biopsy provides a currently available option of round spermatid injection (ROSI). Given the complexity of managing cancer while considering fertility preservation, a multidisciplinary collaboration is important to achieve optimal overall outcomes. |
---|