Cargando…

Salmonella enterica Serovar Typhimurium Exploits Cycling through Epithelial Cells To Colonize Human and Murine Enteroids

Enterobacterial pathogens infect the gut by a multistep process, resulting in colonization of both the lumen and the mucosal epithelium. Due to experimental constraints, it remains challenging to address how luminal and epithelium-lodged pathogen populations cross-feed each other in vivo. Enteroids...

Descripción completa

Detalles Bibliográficos
Autores principales: Geiser, Petra, Di Martino, Maria Letizia, Samperio Ventayol, Pilar, Eriksson, Jens, Sima, Eduardo, Al-Saffar, Anas Kh., Ahl, David, Phillipson, Mia, Webb, Dominic-Luc, Sundbom, Magnus, Hellström, Per M., Sellin, Mikael E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7844539/
https://www.ncbi.nlm.nih.gov/pubmed/33436434
http://dx.doi.org/10.1128/mBio.02684-20
_version_ 1783644367429304320
author Geiser, Petra
Di Martino, Maria Letizia
Samperio Ventayol, Pilar
Eriksson, Jens
Sima, Eduardo
Al-Saffar, Anas Kh.
Ahl, David
Phillipson, Mia
Webb, Dominic-Luc
Sundbom, Magnus
Hellström, Per M.
Sellin, Mikael E.
author_facet Geiser, Petra
Di Martino, Maria Letizia
Samperio Ventayol, Pilar
Eriksson, Jens
Sima, Eduardo
Al-Saffar, Anas Kh.
Ahl, David
Phillipson, Mia
Webb, Dominic-Luc
Sundbom, Magnus
Hellström, Per M.
Sellin, Mikael E.
author_sort Geiser, Petra
collection PubMed
description Enterobacterial pathogens infect the gut by a multistep process, resulting in colonization of both the lumen and the mucosal epithelium. Due to experimental constraints, it remains challenging to address how luminal and epithelium-lodged pathogen populations cross-feed each other in vivo. Enteroids are cultured three-dimensional miniature intestinal organs with a single layer of primary intestinal epithelial cells (IECs) surrounding a central lumen. They offer new opportunities to study enterobacterial infection under near-physiological conditions, at a temporal and spatial resolution not attainable in animal models, but remain poorly explored in this context. We employed microinjection, time-lapse microscopy, bacterial genetics, and barcoded consortium infections to describe the complete infection cycle of Salmonella enterica serovar Typhimurium in both human and murine enteroids. Flagellar motility and type III secretion system 1 (TTSS-1) promoted Salmonella Typhimurium targeting of the intraepithelial compartment and breaching of the epithelial barrier. Strikingly, however, TTSS-1 also potently boosted colonization of the enteroid lumen. By tracing the infection over time, we identified a cycle(s) of TTSS-1-driven IEC invasion, intraepithelial replication, and reemergence through infected IEC expulsion as a key mechanism for Salmonella Typhimurium luminal colonization. These findings suggest a positive feed-forward loop, through which IEC invasion by planktonic bacteria fuels further luminal population expansion, thereby ensuring efficient colonization of both the intraepithelial and luminal niches.
format Online
Article
Text
id pubmed-7844539
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-78445392021-02-05 Salmonella enterica Serovar Typhimurium Exploits Cycling through Epithelial Cells To Colonize Human and Murine Enteroids Geiser, Petra Di Martino, Maria Letizia Samperio Ventayol, Pilar Eriksson, Jens Sima, Eduardo Al-Saffar, Anas Kh. Ahl, David Phillipson, Mia Webb, Dominic-Luc Sundbom, Magnus Hellström, Per M. Sellin, Mikael E. mBio Research Article Enterobacterial pathogens infect the gut by a multistep process, resulting in colonization of both the lumen and the mucosal epithelium. Due to experimental constraints, it remains challenging to address how luminal and epithelium-lodged pathogen populations cross-feed each other in vivo. Enteroids are cultured three-dimensional miniature intestinal organs with a single layer of primary intestinal epithelial cells (IECs) surrounding a central lumen. They offer new opportunities to study enterobacterial infection under near-physiological conditions, at a temporal and spatial resolution not attainable in animal models, but remain poorly explored in this context. We employed microinjection, time-lapse microscopy, bacterial genetics, and barcoded consortium infections to describe the complete infection cycle of Salmonella enterica serovar Typhimurium in both human and murine enteroids. Flagellar motility and type III secretion system 1 (TTSS-1) promoted Salmonella Typhimurium targeting of the intraepithelial compartment and breaching of the epithelial barrier. Strikingly, however, TTSS-1 also potently boosted colonization of the enteroid lumen. By tracing the infection over time, we identified a cycle(s) of TTSS-1-driven IEC invasion, intraepithelial replication, and reemergence through infected IEC expulsion as a key mechanism for Salmonella Typhimurium luminal colonization. These findings suggest a positive feed-forward loop, through which IEC invasion by planktonic bacteria fuels further luminal population expansion, thereby ensuring efficient colonization of both the intraepithelial and luminal niches. American Society for Microbiology 2021-01-12 /pmc/articles/PMC7844539/ /pubmed/33436434 http://dx.doi.org/10.1128/mBio.02684-20 Text en Copyright © 2021 Geiser et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Geiser, Petra
Di Martino, Maria Letizia
Samperio Ventayol, Pilar
Eriksson, Jens
Sima, Eduardo
Al-Saffar, Anas Kh.
Ahl, David
Phillipson, Mia
Webb, Dominic-Luc
Sundbom, Magnus
Hellström, Per M.
Sellin, Mikael E.
Salmonella enterica Serovar Typhimurium Exploits Cycling through Epithelial Cells To Colonize Human and Murine Enteroids
title Salmonella enterica Serovar Typhimurium Exploits Cycling through Epithelial Cells To Colonize Human and Murine Enteroids
title_full Salmonella enterica Serovar Typhimurium Exploits Cycling through Epithelial Cells To Colonize Human and Murine Enteroids
title_fullStr Salmonella enterica Serovar Typhimurium Exploits Cycling through Epithelial Cells To Colonize Human and Murine Enteroids
title_full_unstemmed Salmonella enterica Serovar Typhimurium Exploits Cycling through Epithelial Cells To Colonize Human and Murine Enteroids
title_short Salmonella enterica Serovar Typhimurium Exploits Cycling through Epithelial Cells To Colonize Human and Murine Enteroids
title_sort salmonella enterica serovar typhimurium exploits cycling through epithelial cells to colonize human and murine enteroids
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7844539/
https://www.ncbi.nlm.nih.gov/pubmed/33436434
http://dx.doi.org/10.1128/mBio.02684-20
work_keys_str_mv AT geiserpetra salmonellaentericaserovartyphimuriumexploitscyclingthroughepithelialcellstocolonizehumanandmurineenteroids
AT dimartinomarialetizia salmonellaentericaserovartyphimuriumexploitscyclingthroughepithelialcellstocolonizehumanandmurineenteroids
AT samperioventayolpilar salmonellaentericaserovartyphimuriumexploitscyclingthroughepithelialcellstocolonizehumanandmurineenteroids
AT erikssonjens salmonellaentericaserovartyphimuriumexploitscyclingthroughepithelialcellstocolonizehumanandmurineenteroids
AT simaeduardo salmonellaentericaserovartyphimuriumexploitscyclingthroughepithelialcellstocolonizehumanandmurineenteroids
AT alsaffaranaskh salmonellaentericaserovartyphimuriumexploitscyclingthroughepithelialcellstocolonizehumanandmurineenteroids
AT ahldavid salmonellaentericaserovartyphimuriumexploitscyclingthroughepithelialcellstocolonizehumanandmurineenteroids
AT phillipsonmia salmonellaentericaserovartyphimuriumexploitscyclingthroughepithelialcellstocolonizehumanandmurineenteroids
AT webbdominicluc salmonellaentericaserovartyphimuriumexploitscyclingthroughepithelialcellstocolonizehumanandmurineenteroids
AT sundbommagnus salmonellaentericaserovartyphimuriumexploitscyclingthroughepithelialcellstocolonizehumanandmurineenteroids
AT hellstromperm salmonellaentericaserovartyphimuriumexploitscyclingthroughepithelialcellstocolonizehumanandmurineenteroids
AT sellinmikaele salmonellaentericaserovartyphimuriumexploitscyclingthroughepithelialcellstocolonizehumanandmurineenteroids