Cargando…

Sparse-Aware Bias-Compensated Adaptive Filtering Algorithms Using the Maximum Correntropy Criterion for Sparse System Identification with Noisy Input

To address the sparse system identification problem under noisy input and non-Gaussian output measurement noise, two novel types of sparse bias-compensated normalized maximum correntropy criterion algorithms are developed, which are capable of eliminating the impact of non-Gaussian measurement noise...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Wentao, Zheng, Dongqiao, Zhang, Zhiyu, Duan, Jiandong, Qiu, Jinzhe, Hu, Xianzhi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7844630/
https://www.ncbi.nlm.nih.gov/pubmed/33265497
http://dx.doi.org/10.3390/e20060407
_version_ 1783644387718201344
author Ma, Wentao
Zheng, Dongqiao
Zhang, Zhiyu
Duan, Jiandong
Qiu, Jinzhe
Hu, Xianzhi
author_facet Ma, Wentao
Zheng, Dongqiao
Zhang, Zhiyu
Duan, Jiandong
Qiu, Jinzhe
Hu, Xianzhi
author_sort Ma, Wentao
collection PubMed
description To address the sparse system identification problem under noisy input and non-Gaussian output measurement noise, two novel types of sparse bias-compensated normalized maximum correntropy criterion algorithms are developed, which are capable of eliminating the impact of non-Gaussian measurement noise and noisy input. The first is developed by using the correntropy-induced metric as the sparsity penalty constraint, which is a smoothed approximation of the [Formula: see text] norm. The second is designed using the proportionate update scheme, which facilitates the close tracking of system parameter change. Simulation results confirm that the proposed algorithms can effectively improve the identification performance compared with other algorithms presented in the literature for the sparse system identification problem.
format Online
Article
Text
id pubmed-7844630
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-78446302021-02-24 Sparse-Aware Bias-Compensated Adaptive Filtering Algorithms Using the Maximum Correntropy Criterion for Sparse System Identification with Noisy Input Ma, Wentao Zheng, Dongqiao Zhang, Zhiyu Duan, Jiandong Qiu, Jinzhe Hu, Xianzhi Entropy (Basel) Article To address the sparse system identification problem under noisy input and non-Gaussian output measurement noise, two novel types of sparse bias-compensated normalized maximum correntropy criterion algorithms are developed, which are capable of eliminating the impact of non-Gaussian measurement noise and noisy input. The first is developed by using the correntropy-induced metric as the sparsity penalty constraint, which is a smoothed approximation of the [Formula: see text] norm. The second is designed using the proportionate update scheme, which facilitates the close tracking of system parameter change. Simulation results confirm that the proposed algorithms can effectively improve the identification performance compared with other algorithms presented in the literature for the sparse system identification problem. MDPI 2018-05-25 /pmc/articles/PMC7844630/ /pubmed/33265497 http://dx.doi.org/10.3390/e20060407 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Ma, Wentao
Zheng, Dongqiao
Zhang, Zhiyu
Duan, Jiandong
Qiu, Jinzhe
Hu, Xianzhi
Sparse-Aware Bias-Compensated Adaptive Filtering Algorithms Using the Maximum Correntropy Criterion for Sparse System Identification with Noisy Input
title Sparse-Aware Bias-Compensated Adaptive Filtering Algorithms Using the Maximum Correntropy Criterion for Sparse System Identification with Noisy Input
title_full Sparse-Aware Bias-Compensated Adaptive Filtering Algorithms Using the Maximum Correntropy Criterion for Sparse System Identification with Noisy Input
title_fullStr Sparse-Aware Bias-Compensated Adaptive Filtering Algorithms Using the Maximum Correntropy Criterion for Sparse System Identification with Noisy Input
title_full_unstemmed Sparse-Aware Bias-Compensated Adaptive Filtering Algorithms Using the Maximum Correntropy Criterion for Sparse System Identification with Noisy Input
title_short Sparse-Aware Bias-Compensated Adaptive Filtering Algorithms Using the Maximum Correntropy Criterion for Sparse System Identification with Noisy Input
title_sort sparse-aware bias-compensated adaptive filtering algorithms using the maximum correntropy criterion for sparse system identification with noisy input
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7844630/
https://www.ncbi.nlm.nih.gov/pubmed/33265497
http://dx.doi.org/10.3390/e20060407
work_keys_str_mv AT mawentao sparseawarebiascompensatedadaptivefilteringalgorithmsusingthemaximumcorrentropycriterionforsparsesystemidentificationwithnoisyinput
AT zhengdongqiao sparseawarebiascompensatedadaptivefilteringalgorithmsusingthemaximumcorrentropycriterionforsparsesystemidentificationwithnoisyinput
AT zhangzhiyu sparseawarebiascompensatedadaptivefilteringalgorithmsusingthemaximumcorrentropycriterionforsparsesystemidentificationwithnoisyinput
AT duanjiandong sparseawarebiascompensatedadaptivefilteringalgorithmsusingthemaximumcorrentropycriterionforsparsesystemidentificationwithnoisyinput
AT qiujinzhe sparseawarebiascompensatedadaptivefilteringalgorithmsusingthemaximumcorrentropycriterionforsparsesystemidentificationwithnoisyinput
AT huxianzhi sparseawarebiascompensatedadaptivefilteringalgorithmsusingthemaximumcorrentropycriterionforsparsesystemidentificationwithnoisyinput