Cargando…
Sparse-Aware Bias-Compensated Adaptive Filtering Algorithms Using the Maximum Correntropy Criterion for Sparse System Identification with Noisy Input
To address the sparse system identification problem under noisy input and non-Gaussian output measurement noise, two novel types of sparse bias-compensated normalized maximum correntropy criterion algorithms are developed, which are capable of eliminating the impact of non-Gaussian measurement noise...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7844630/ https://www.ncbi.nlm.nih.gov/pubmed/33265497 http://dx.doi.org/10.3390/e20060407 |
_version_ | 1783644387718201344 |
---|---|
author | Ma, Wentao Zheng, Dongqiao Zhang, Zhiyu Duan, Jiandong Qiu, Jinzhe Hu, Xianzhi |
author_facet | Ma, Wentao Zheng, Dongqiao Zhang, Zhiyu Duan, Jiandong Qiu, Jinzhe Hu, Xianzhi |
author_sort | Ma, Wentao |
collection | PubMed |
description | To address the sparse system identification problem under noisy input and non-Gaussian output measurement noise, two novel types of sparse bias-compensated normalized maximum correntropy criterion algorithms are developed, which are capable of eliminating the impact of non-Gaussian measurement noise and noisy input. The first is developed by using the correntropy-induced metric as the sparsity penalty constraint, which is a smoothed approximation of the [Formula: see text] norm. The second is designed using the proportionate update scheme, which facilitates the close tracking of system parameter change. Simulation results confirm that the proposed algorithms can effectively improve the identification performance compared with other algorithms presented in the literature for the sparse system identification problem. |
format | Online Article Text |
id | pubmed-7844630 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-78446302021-02-24 Sparse-Aware Bias-Compensated Adaptive Filtering Algorithms Using the Maximum Correntropy Criterion for Sparse System Identification with Noisy Input Ma, Wentao Zheng, Dongqiao Zhang, Zhiyu Duan, Jiandong Qiu, Jinzhe Hu, Xianzhi Entropy (Basel) Article To address the sparse system identification problem under noisy input and non-Gaussian output measurement noise, two novel types of sparse bias-compensated normalized maximum correntropy criterion algorithms are developed, which are capable of eliminating the impact of non-Gaussian measurement noise and noisy input. The first is developed by using the correntropy-induced metric as the sparsity penalty constraint, which is a smoothed approximation of the [Formula: see text] norm. The second is designed using the proportionate update scheme, which facilitates the close tracking of system parameter change. Simulation results confirm that the proposed algorithms can effectively improve the identification performance compared with other algorithms presented in the literature for the sparse system identification problem. MDPI 2018-05-25 /pmc/articles/PMC7844630/ /pubmed/33265497 http://dx.doi.org/10.3390/e20060407 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ma, Wentao Zheng, Dongqiao Zhang, Zhiyu Duan, Jiandong Qiu, Jinzhe Hu, Xianzhi Sparse-Aware Bias-Compensated Adaptive Filtering Algorithms Using the Maximum Correntropy Criterion for Sparse System Identification with Noisy Input |
title | Sparse-Aware Bias-Compensated Adaptive Filtering Algorithms Using the Maximum Correntropy Criterion for Sparse System Identification with Noisy Input |
title_full | Sparse-Aware Bias-Compensated Adaptive Filtering Algorithms Using the Maximum Correntropy Criterion for Sparse System Identification with Noisy Input |
title_fullStr | Sparse-Aware Bias-Compensated Adaptive Filtering Algorithms Using the Maximum Correntropy Criterion for Sparse System Identification with Noisy Input |
title_full_unstemmed | Sparse-Aware Bias-Compensated Adaptive Filtering Algorithms Using the Maximum Correntropy Criterion for Sparse System Identification with Noisy Input |
title_short | Sparse-Aware Bias-Compensated Adaptive Filtering Algorithms Using the Maximum Correntropy Criterion for Sparse System Identification with Noisy Input |
title_sort | sparse-aware bias-compensated adaptive filtering algorithms using the maximum correntropy criterion for sparse system identification with noisy input |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7844630/ https://www.ncbi.nlm.nih.gov/pubmed/33265497 http://dx.doi.org/10.3390/e20060407 |
work_keys_str_mv | AT mawentao sparseawarebiascompensatedadaptivefilteringalgorithmsusingthemaximumcorrentropycriterionforsparsesystemidentificationwithnoisyinput AT zhengdongqiao sparseawarebiascompensatedadaptivefilteringalgorithmsusingthemaximumcorrentropycriterionforsparsesystemidentificationwithnoisyinput AT zhangzhiyu sparseawarebiascompensatedadaptivefilteringalgorithmsusingthemaximumcorrentropycriterionforsparsesystemidentificationwithnoisyinput AT duanjiandong sparseawarebiascompensatedadaptivefilteringalgorithmsusingthemaximumcorrentropycriterionforsparsesystemidentificationwithnoisyinput AT qiujinzhe sparseawarebiascompensatedadaptivefilteringalgorithmsusingthemaximumcorrentropycriterionforsparsesystemidentificationwithnoisyinput AT huxianzhi sparseawarebiascompensatedadaptivefilteringalgorithmsusingthemaximumcorrentropycriterionforsparsesystemidentificationwithnoisyinput |