Cargando…
Sparse-Aware Bias-Compensated Adaptive Filtering Algorithms Using the Maximum Correntropy Criterion for Sparse System Identification with Noisy Input
To address the sparse system identification problem under noisy input and non-Gaussian output measurement noise, two novel types of sparse bias-compensated normalized maximum correntropy criterion algorithms are developed, which are capable of eliminating the impact of non-Gaussian measurement noise...
Autores principales: | Ma, Wentao, Zheng, Dongqiao, Zhang, Zhiyu, Duan, Jiandong, Qiu, Jinzhe, Hu, Xianzhi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7844630/ https://www.ncbi.nlm.nih.gov/pubmed/33265497 http://dx.doi.org/10.3390/e20060407 |
Ejemplares similares
-
Newtonian-Type Adaptive Filtering Based on the Maximum Correntropy Criterion
por: Yue, Pengcheng, et al.
Publicado: (2020) -
Frequency domain maximum correntropy criterion spline adaptive filtering
por: Guo, Wenyan, et al.
Publicado: (2021) -
Electricity Consumption Forecasting Scheme via Improved LSSVM with Maximum Correntropy Criterion
por: Duan, Jiandong, et al.
Publicado: (2018) -
Electricity Consumption Forecasting using Support Vector Regression with the Mixture Maximum Correntropy Criterion
por: Duan, Jiandong, et al.
Publicado: (2019) -
Adaptive Extended Kalman Filter with Correntropy Loss for Robust Power System State Estimation
por: Zhang, Zhiyu, et al.
Publicado: (2019)