Cargando…

MicroRNA-212 Targets Mitogen-Activated Protein Kinase 1 to Inhibit Proliferation and Invasion of Prostate Cancer Cells

Prostate cancer (PCa) is the second most commonly diagnosed malignancy and the fifth leading cause of cancer-related deaths in males worldwide. MicroRNAs (miRNAs) may serve as important regulators in PCa occurrence and development. Therefore, understanding the expression and functions of PCa-related...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Bo, Jin, Xunbo, Wang, Jianbo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cognizant Communication Corporation 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7844748/
https://www.ncbi.nlm.nih.gov/pubmed/29321092
http://dx.doi.org/10.3727/096504018X15154112497142
Descripción
Sumario:Prostate cancer (PCa) is the second most commonly diagnosed malignancy and the fifth leading cause of cancer-related deaths in males worldwide. MicroRNAs (miRNAs) may serve as important regulators in PCa occurrence and development. Therefore, understanding the expression and functions of PCa-related miRNAs may be beneficial for the identification of novel therapeutic methods for patients with PCa. In this study, miRNA-212 (miR-212) was evidently downregulated in PCa tissues and several PCa cell lines. Functional assays showed that the resumption of miR-212 expression attenuated cell proliferation and invasion and increased the apoptosis of PCa. In addition, mitogen-activated protein kinase 1 (MAPK1), a well-known oncogene, was identified as a novel target of miR-212 in PCa, as confirmed by bioinformatics, luciferase reporter assay, qRT-PCR, and Western blot analysis. Furthermore, MAPK1 expression was upregulated in PCa tissues and inversely correlated with miR-212 expression. Rescue experiments also demonstrated that restored MAPK1 expression reversed the tumor-suppressing effects of miR-212 on PCa cell proliferation, invasion, and apoptosis. In conclusion, miR-212 may exert tumor-suppressing roles in PCa by regulating MAPK1 and could be a novel therapeutic target for treatment of patients with this malignancy.