Cargando…
miR-188 Inhibits Glioma Cell Proliferation and Cell Cycle Progression Through Targeting β-Catenin
MicroRNAs (miRNAs) play important roles in several human cancers. Although miR-188 has been suggested to function as a tumor repressor in cancers, its precise role in glioma and the molecular mechanism remain unknown. In the present study, we investigated the effect of miR-188 on glioma and explored...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cognizant Communication Corporation
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7844764/ https://www.ncbi.nlm.nih.gov/pubmed/29268818 http://dx.doi.org/10.3727/096504017X15127309628257 |
Sumario: | MicroRNAs (miRNAs) play important roles in several human cancers. Although miR-188 has been suggested to function as a tumor repressor in cancers, its precise role in glioma and the molecular mechanism remain unknown. In the present study, we investigated the effect of miR-188 on glioma and explored its relevant mechanisms. We found that the expression of miR-188 is dramatically downregulated in glioma tissues and cell lines. Subsequent investigation revealed that miR-188 expression was inversely correlated with β-catenin expression in glioma tissue samples. Using a luciferase reporter assay, β-catenin was determined to be a direct target of miR-188. Overexpression of miR-188 reduced β-catenin expression at both the mRNA and protein levels, and inhibition of miR-188 increased β-catenin expression. Moreover, we found that overexpression of miR-188 suppressed glioma cell proliferation and cell cycle G(1)–S transition, whereas inhibition of miR-188 promoted glioma cell proliferation. Importantly, silencing β-catenin recapitulated the cellular and molecular effects seen upon miR-188 overexpression, which included inhibiting glioma cell proliferation and G(1)–S transition. Taken together, our results demonstrated that miR-188 inhibits glioma cell proliferation by targeting β-catenin, representing an effective therapeutic strategy for glioma. |
---|