Cargando…
Matrine Inhibits Neuroblastoma Cell Proliferation and Migration by Enhancing Tribbles 3 Expression
Neuroblastoma is a major contributor of cancer-specific mortality. Although remarkable enhancement has been achieved in the treatment of neuroblastoma in patients with early stage disease, limited progress has been made in the treatment of patients with high-risk neuroblastoma. Thus, innovative appr...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cognizant Communication Corporation
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7844772/ https://www.ncbi.nlm.nih.gov/pubmed/29386091 http://dx.doi.org/10.3727/096504018X15168461629558 |
Sumario: | Neuroblastoma is a major contributor of cancer-specific mortality. Although remarkable enhancement has been achieved in the treatment of neuroblastoma in patients with early stage disease, limited progress has been made in the treatment of patients with high-risk neuroblastoma. Thus, innovative approaches are required to achieve further improvements in neuroblastoma patient survival outcomes. The major alkaloid obtained from Sophora flavescens Ait, matrine, has been shown to counteract malignancy in various kinds of cancers. In the current study, we evaluated the effects of matrine on the migration and proliferation of neuroblastoma cells. Cell cycle analysis coupled with Transwell and wound healing experiments showed that matrine triggers G(2)/M cell cycle arrest and suppresses neuroblastoma migration. This effect of matrine is due to upregulation of TRB3 expression followed by inhibition of the PI3K/AKT activation. Consistent with the in vitro data, growth of xenograft cancer was also suppressed by matrine. Our results indicate that matrine inhibits neuroblastoma cell proliferation and migration by enhancing TRB3 expression, suggesting that matrine may serve as a promising agent for the treatment of neuroblastoma. |
---|