Cargando…

Light-Fueled Nanoscale Surface Waving in Chiral Liquid Crystal Networks

[Image: see text] Nano- and micro-actuating systems are promising for application in microfluidics, haptics, tunable optics, and soft robotics. Surfaces capable to change their topography at the nano- and microscale on demand would allow control over wettability, friction, and surface-driven particl...

Descripción completa

Detalles Bibliográficos
Autores principales: Ryabchun, Alexander, Lancia, Federico, Katsonis, Nathalie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7844818/
https://www.ncbi.nlm.nih.gov/pubmed/33428396
http://dx.doi.org/10.1021/acsami.0c20006
Descripción
Sumario:[Image: see text] Nano- and micro-actuating systems are promising for application in microfluidics, haptics, tunable optics, and soft robotics. Surfaces capable to change their topography at the nano- and microscale on demand would allow control over wettability, friction, and surface-driven particle motility. Here, we show that light-responsive cholesteric liquid crystal (LC) networks undergo a waving motion of their surface topography upon irradiation with light. These dynamic surfaces are fabricated with a maskless one-step procedure, relying on the liquid crystal alignment in periodic structures upon application of a weak electric field. The geometrical features of the surfaces are controlled by tuning the pitch of the liquid crystal. Pitch control by confinement allows engineering one-dimensional (1D) and two-dimensional (2D) structures that wave upon light exposure. This work demonstrates the potential that self-organizing systems might have for engineering dynamic materials, and harnessing the functionality of molecules to form dynamic surfaces, with nanoscale precision over their waving motion.