Cargando…
Auto-HMM-LMF: feature selection based method for prediction of drug response via autoencoder and hidden Markov model
BACKGROUND: Predicting the response of cancer cell lines to specific drugs is an essential problem in personalized medicine. Since drug response is closely associated with genomic information in cancer cells, some large panels of several hundred human cancer cell lines are organized with genomic and...
Autores principales: | Emdadi, Akram, Eslahchi, Changiz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7844991/ https://www.ncbi.nlm.nih.gov/pubmed/33509079 http://dx.doi.org/10.1186/s12859-021-03974-3 |
Ejemplares similares
-
A novel algorithm for parameter estimation of Hidden Markov Model inspired by Ant Colony Optimization
por: Emdadi, Akram, et al.
Publicado: (2019) -
DSPLMF: A Method for Cancer Drug Sensitivity Prediction Using a Novel Regularization Approach in Logistic Matrix Factorization
por: Emdadi, Akram, et al.
Publicado: (2020) -
hsegHMM: hidden Markov model-based allele-specific copy number alteration analysis accounting for hypersegmentation
por: Choo-Wosoba, Hyoyoung, et al.
Publicado: (2018) -
LuxHMM: DNA methylation analysis with genome segmentation via hidden Markov model
por: Malonzo, Maia H., et al.
Publicado: (2023) -
Hidden Markov model speed heuristic and iterative HMM search procedure
por: Johnson, L Steven, et al.
Publicado: (2010)