Cargando…
COVID-19 outbreak in Wuhan demonstrates the limitations of publicly available case numbers for epidemiological modeling
Epidemiological models are widely used to analyze the spread of diseases such as the global COVID-19 pandemic caused by SARS-CoV-2. However, all models are based on simplifying assumptions and often on sparse data. This limits the reliability of parameter estimates and predictions. In this manuscrip...
Autores principales: | Raimúndez, Elba, Dudkin, Erika, Vanhoefer, Jakob, Alamoudi, Emad, Merkt, Simon, Fuhrmann, Lara, Bai, Fan, Hasenauer, Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Authors. Published by Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7845523/ https://www.ncbi.nlm.nih.gov/pubmed/33556763 http://dx.doi.org/10.1016/j.epidem.2021.100439 |
Ejemplares similares
-
pyPESTO: a modular and scalable tool for parameter estimation for dynamic models
por: Schälte, Yannik, et al.
Publicado: (2023) -
Posterior marginalization accelerates Bayesian inference for dynamical models of biological processes
por: Raimúndez, Elba, et al.
Publicado: (2023) -
Benchmark problems for dynamic modeling of intracellular processes
por: Hass, Helge, et al.
Publicado: (2019) -
PEtab—Interoperable specification of parameter estimation problems in systems biology
por: Schmiester, Leonard, et al.
Publicado: (2021) -
Integrative modelling of reported case numbers and seroprevalence reveals time-dependent test efficiency and infectious contacts
por: Contento, Lorenzo, et al.
Publicado: (2023)