Cargando…

Genomic Epidemiology and Evolution of Escherichia coli in Wild Animals in Mexico

Escherichia coli is a common bacterial species in the gastrointestinal tracts of warm-blooded animals and humans. Pathogenicity and antimicrobial resistance in E. coli may emerge via host switching from animal reservoirs. Despite its potential clinical importance, knowledge of the population structu...

Descripción completa

Detalles Bibliográficos
Autores principales: Murphy, Robert, Palm, Martin, Mustonen, Ville, Warringer, Jonas, Farewell, Anne, Parts, Leopold, Moradigaravand, Danesh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7845601/
https://www.ncbi.nlm.nih.gov/pubmed/33408222
http://dx.doi.org/10.1128/mSphere.00738-20
_version_ 1783644585803644928
author Murphy, Robert
Palm, Martin
Mustonen, Ville
Warringer, Jonas
Farewell, Anne
Parts, Leopold
Moradigaravand, Danesh
author_facet Murphy, Robert
Palm, Martin
Mustonen, Ville
Warringer, Jonas
Farewell, Anne
Parts, Leopold
Moradigaravand, Danesh
author_sort Murphy, Robert
collection PubMed
description Escherichia coli is a common bacterial species in the gastrointestinal tracts of warm-blooded animals and humans. Pathogenicity and antimicrobial resistance in E. coli may emerge via host switching from animal reservoirs. Despite its potential clinical importance, knowledge of the population structure of commensal E. coli within wild hosts and the epidemiological links between E. coli in nonhuman hosts and E. coli in humans is still scarce. In this study, we analyzed the whole-genome sequencing data of a collection of 119 commensal E. coli strains recovered from the guts of 55 mammal and bird species in Mexico and Venezuela in the 1990s. We observed low concordance between the population structures of E. coli isolates colonizing wild animals and the phylogeny, taxonomy, and ecological and physiological attributes of the host species, with distantly related E. coli strains often colonizing the same or similar host species and distantly related host species often hosting closely related E. coli strains. We found no evidence for recent transmission of E. coli genomes from wild animals to either domesticated animals or humans. However, multiple livestock- and human-related virulence factor genes were present in E. coli of wild animals, including virulence factors characteristic of Shiga toxin-producing E. coli (STEC) and atypical enteropathogenic E. coli (aEPEC), where several isolates from wild hosts harbored the locus of enterocyte effacement (LEE) pathogenicity island. Moreover, E. coli isolates from wild animal hosts often harbored known antibiotic resistance determinants, including those against ciprofloxacin, aminoglycosides, tetracyclines, and beta-lactams, with some determinants present in multiple, distantly related E. coli lineages colonizing very different host animals. We conclude that genome pools of E. coli colonizing the guts of wild animals and humans share virulence and antibiotic resistance genes, underscoring the idea that wild animals could serve as reservoirs for E. coli pathogenicity in human and livestock infections. IMPORTANCE Escherichia coli is a clinically important bacterial species implicated in human- and livestock-associated infections worldwide. The bacterium is known to reside in the guts of humans, livestock, and wild animals. Although wild animals are recognized as potential reservoirs for pathogenic E. coli strains, the knowledge of the population structure of E. coli in wild hosts is still scarce. In this study, we used fine resolution of whole-genome sequencing to provide novel insights into the evolution of E. coli genomes from a small yet diverse collection of strains recovered within a broad range of wild animal species (including mammals and birds), the coevolution of E. coli strains with their hosts, and the genetics of pathogenicity of E. coli strains in wild hosts in Mexico. Our results provide evidence for the clinical importance of wild animals as reservoirs for pathogenic strains and highlight the need to include nonhuman hosts in the surveillance programs for E. coli infections.
format Online
Article
Text
id pubmed-7845601
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-78456012021-01-29 Genomic Epidemiology and Evolution of Escherichia coli in Wild Animals in Mexico Murphy, Robert Palm, Martin Mustonen, Ville Warringer, Jonas Farewell, Anne Parts, Leopold Moradigaravand, Danesh mSphere Research Article Escherichia coli is a common bacterial species in the gastrointestinal tracts of warm-blooded animals and humans. Pathogenicity and antimicrobial resistance in E. coli may emerge via host switching from animal reservoirs. Despite its potential clinical importance, knowledge of the population structure of commensal E. coli within wild hosts and the epidemiological links between E. coli in nonhuman hosts and E. coli in humans is still scarce. In this study, we analyzed the whole-genome sequencing data of a collection of 119 commensal E. coli strains recovered from the guts of 55 mammal and bird species in Mexico and Venezuela in the 1990s. We observed low concordance between the population structures of E. coli isolates colonizing wild animals and the phylogeny, taxonomy, and ecological and physiological attributes of the host species, with distantly related E. coli strains often colonizing the same or similar host species and distantly related host species often hosting closely related E. coli strains. We found no evidence for recent transmission of E. coli genomes from wild animals to either domesticated animals or humans. However, multiple livestock- and human-related virulence factor genes were present in E. coli of wild animals, including virulence factors characteristic of Shiga toxin-producing E. coli (STEC) and atypical enteropathogenic E. coli (aEPEC), where several isolates from wild hosts harbored the locus of enterocyte effacement (LEE) pathogenicity island. Moreover, E. coli isolates from wild animal hosts often harbored known antibiotic resistance determinants, including those against ciprofloxacin, aminoglycosides, tetracyclines, and beta-lactams, with some determinants present in multiple, distantly related E. coli lineages colonizing very different host animals. We conclude that genome pools of E. coli colonizing the guts of wild animals and humans share virulence and antibiotic resistance genes, underscoring the idea that wild animals could serve as reservoirs for E. coli pathogenicity in human and livestock infections. IMPORTANCE Escherichia coli is a clinically important bacterial species implicated in human- and livestock-associated infections worldwide. The bacterium is known to reside in the guts of humans, livestock, and wild animals. Although wild animals are recognized as potential reservoirs for pathogenic E. coli strains, the knowledge of the population structure of E. coli in wild hosts is still scarce. In this study, we used fine resolution of whole-genome sequencing to provide novel insights into the evolution of E. coli genomes from a small yet diverse collection of strains recovered within a broad range of wild animal species (including mammals and birds), the coevolution of E. coli strains with their hosts, and the genetics of pathogenicity of E. coli strains in wild hosts in Mexico. Our results provide evidence for the clinical importance of wild animals as reservoirs for pathogenic strains and highlight the need to include nonhuman hosts in the surveillance programs for E. coli infections. American Society for Microbiology 2021-01-06 /pmc/articles/PMC7845601/ /pubmed/33408222 http://dx.doi.org/10.1128/mSphere.00738-20 Text en Copyright © 2021 Murphy et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Murphy, Robert
Palm, Martin
Mustonen, Ville
Warringer, Jonas
Farewell, Anne
Parts, Leopold
Moradigaravand, Danesh
Genomic Epidemiology and Evolution of Escherichia coli in Wild Animals in Mexico
title Genomic Epidemiology and Evolution of Escherichia coli in Wild Animals in Mexico
title_full Genomic Epidemiology and Evolution of Escherichia coli in Wild Animals in Mexico
title_fullStr Genomic Epidemiology and Evolution of Escherichia coli in Wild Animals in Mexico
title_full_unstemmed Genomic Epidemiology and Evolution of Escherichia coli in Wild Animals in Mexico
title_short Genomic Epidemiology and Evolution of Escherichia coli in Wild Animals in Mexico
title_sort genomic epidemiology and evolution of escherichia coli in wild animals in mexico
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7845601/
https://www.ncbi.nlm.nih.gov/pubmed/33408222
http://dx.doi.org/10.1128/mSphere.00738-20
work_keys_str_mv AT murphyrobert genomicepidemiologyandevolutionofescherichiacoliinwildanimalsinmexico
AT palmmartin genomicepidemiologyandevolutionofescherichiacoliinwildanimalsinmexico
AT mustonenville genomicepidemiologyandevolutionofescherichiacoliinwildanimalsinmexico
AT warringerjonas genomicepidemiologyandevolutionofescherichiacoliinwildanimalsinmexico
AT farewellanne genomicepidemiologyandevolutionofescherichiacoliinwildanimalsinmexico
AT partsleopold genomicepidemiologyandevolutionofescherichiacoliinwildanimalsinmexico
AT moradigaravanddanesh genomicepidemiologyandevolutionofescherichiacoliinwildanimalsinmexico