Cargando…

Coherence Depletion in Quantum Algorithms

Besides the superior efficiency compared to their classical counterparts, quantum algorithms known so far are basically task-dependent, and scarcely any common features are shared between them. In this work, however, we show that the depletion of quantum coherence turns out to be a common phenomenon...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Ye-Chao, Shang, Jiangwei, Zhang, Xiangdong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7845771/
https://www.ncbi.nlm.nih.gov/pubmed/33266975
http://dx.doi.org/10.3390/e21030260
Descripción
Sumario:Besides the superior efficiency compared to their classical counterparts, quantum algorithms known so far are basically task-dependent, and scarcely any common features are shared between them. In this work, however, we show that the depletion of quantum coherence turns out to be a common phenomenon in these algorithms. For all the quantum algorithms that we investigated, including Grover’s algorithm, Deutsch–Jozsa algorithm, and Shor’s algorithm, quantum coherence of the system states reduces to the minimum along with the successful execution of the respective processes. Notably, a similar conclusion cannot be drawn using other quantitative measures such as quantum entanglement. Thus, we expect that coherence depletion as a common feature can be useful for devising new quantum algorithms in the future.