Cargando…
Improving the Performance of Storage Tank Fault Diagnosis by Removing Unwanted Components and Utilizing Wavelet-Based Features
This paper proposes a reliable fault diagnosis model for a spherical storage tank. The proposed method first used a blind source separation (BSS) technique to de-noise the input signals so that the signals acquired from a spherical tank under two types of conditions (i.e., normal and crack condition...
Autores principales: | Tra, Viet, Duong, Bach-Phi, Kim, Jae-Young, Sohaib, Muhammad, Kim, Jong-Myon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7845777/ https://www.ncbi.nlm.nih.gov/pubmed/33266861 http://dx.doi.org/10.3390/e21020145 |
Ejemplares similares
-
Non-Mutually Exclusive Deep Neural Network Classifier for Combined Modes of Bearing Fault Diagnosis
por: Duong, Bach Phi, et al.
Publicado: (2018) -
Deep Learning-Based Adaptive Neural-Fuzzy Structure Scheme for Bearing Fault Pattern Recognition and Crack Size Identification
por: Piltan, Farzin, et al.
Publicado: (2021) -
A Reliable Health Indicator for Fault Prognosis of Bearings
por: Duong, Bach Phi, et al.
Publicado: (2018) -
Bearing Fault Diagnosis under Variable Speed Using Convolutional Neural Networks and the Stochastic Diagonal Levenberg-Marquardt Algorithm
por: Tra, Viet, et al.
Publicado: (2017) -
A Hybrid Feature Model and Deep-Learning-Based Bearing Fault Diagnosis
por: Sohaib, Muhammad, et al.
Publicado: (2017)