Cargando…
Asymptotic turbulent friction in 2D rough-walled flows
The friction f is the property of wall-bounded flows that sets the pumping cost of a pipeline, the draining capacity of a river, and other variables of practical relevance. For highly turbulent rough-walled pipe flows, f depends solely on the roughness length scale r, and the f − r relation may be e...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7846176/ https://www.ncbi.nlm.nih.gov/pubmed/33514543 http://dx.doi.org/10.1126/sciadv.abc6234 |
Sumario: | The friction f is the property of wall-bounded flows that sets the pumping cost of a pipeline, the draining capacity of a river, and other variables of practical relevance. For highly turbulent rough-walled pipe flows, f depends solely on the roughness length scale r, and the f − r relation may be expressed by the Strickler empirical scaling f ∝ r(1/3). Here, we show experimentally that for soap film flows that are the two-dimensional (2D) equivalent of highly turbulent rough-walled pipe flows, f ∝ r and the f − r relation is not the same in 2D as in 3D. Our findings are beyond the purview of the standard theory of friction but consistent with a competing theory in which f is linked to the turbulent spectrum via the spectral exponent α: In 3D, α = 5/3 and the theory yields f ∝ r(1/3); in 2D, α = 3 and the theory yields f ∝ r. |
---|