Cargando…
Reference-Driven Undersampled MR Image Reconstruction Using Wavelet Sparsity-Constrained Deep Image Prior
Deep learning has shown potential in significantly improving performance for undersampled magnetic resonance (MR) image reconstruction. However, one challenge for the application of deep learning to clinical scenarios is the requirement of large, high-quality patient-based datasets for network train...
Autores principales: | Zhao, Di, Huang, Yanhu, Zhao, Feng, Qin, Binyi, Zheng, Jincun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7846397/ https://www.ncbi.nlm.nih.gov/pubmed/33552232 http://dx.doi.org/10.1155/2021/8865582 |
Ejemplares similares
-
Compressed Sensing MR Image Reconstruction Exploiting TGV and Wavelet Sparsity
por: Zhao, Di, et al.
Publicado: (2014) -
Undersampled MR Image Reconstruction with Data-Driven Tight Frame
por: Liu, Jianbo, et al.
Publicado: (2015) -
Complexities of deep learning-based undersampled MR image reconstruction
por: Noordman, Constant Richard, et al.
Publicado: (2023) -
MR image reconstruction from undersampled data for image-guided radiation therapy using a patient-specific deep manifold image prior
por: Grandinetti, Jace, et al.
Publicado: (2022) -
Deep image prior for undersampling high-speed photoacoustic microscopy
por: Vu, Tri, et al.
Publicado: (2021)