Cargando…

The usefulness of SwiftScan technology for bone scintigraphy using a novel anthropomorphic phantom

The aim of this study was to demonstrate the usefulness of SwiftScan with a low-energy high-resolution and sensitivity (LEHRS) collimator for bone scintigraphy using a novel bone phantom simulating the human body. SwiftScan planar image of lateral view was acquired in clinical condition; thereafter,...

Descripción completa

Detalles Bibliográficos
Autores principales: Shibutani, Takayuki, Onoguchi, Masahisa, Naoi, Yuka, Yoneyama, Hiroto, Konishi, Takahiro, Tatami, Ringo, Nakajima, Kenichi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7846574/
https://www.ncbi.nlm.nih.gov/pubmed/33514818
http://dx.doi.org/10.1038/s41598-021-82082-x
Descripción
Sumario:The aim of this study was to demonstrate the usefulness of SwiftScan with a low-energy high-resolution and sensitivity (LEHRS) collimator for bone scintigraphy using a novel bone phantom simulating the human body. SwiftScan planar image of lateral view was acquired in clinical condition; thereafter, each planar image of different blend ratio (0–80%) of Crality 2D processing were created. SwiftScan planar images with reduced acquisition time by 25–75% were created by Poisson’s resampling processing. SwiftScan single photon emission computed tomography (SPECT) was acquired with step-and-shoot and continuous mode, and SPECT images were reconstructed using a three-dimensional ordered subset expectation maximization incorporating attenuation, scatter and spatial resolution corrections. SwiftScan planar image showed a high contrast to noise ratio (CNR) and low percent of the coefficient of variance (%CV) compared with conventional planar image. The CNR of the tumor parts in SwiftScan SPECT was higher than that of the conventional SPECT image of step and shoot acquisition, while the %CV showed the lowest value in all systems. In conclusion, SwiftScan planar and SPECT images were able to reduce the image noise compared with planar and SPECT image with a low-energy high-resolution collimator, so that SwiftScan planar and SPECT images could be obtained a high CNR. Furthermore, the SwiftScan planar image was able to reduce the acquisition time by 25% when the blend ratio of Clarity 2D processing set to more than 40%.