Cargando…

Multimodal in vivo recording using transparent graphene microelectrodes illuminates spatiotemporal seizure dynamics at the microscale

Neurological disorders such as epilepsy arise from disrupted brain networks. Our capacity to treat these disorders is limited by our inability to map these networks at sufficient temporal and spatial scales to target interventions. Current best techniques either sample broad areas at low temporal re...

Descripción completa

Detalles Bibliográficos
Autores principales: Driscoll, Nicolette, Rosch, Richard E., Murphy, Brendan B., Ashourvan, Arian, Vishnubhotla, Ramya, Dickens, Olivia O., Johnson, A. T. Charlie, Davis, Kathryn A., Litt, Brian, Bassett, Danielle S., Takano, Hajime, Vitale, Flavia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7846732/
https://www.ncbi.nlm.nih.gov/pubmed/33514839
http://dx.doi.org/10.1038/s42003-021-01670-9
_version_ 1783644791353901056
author Driscoll, Nicolette
Rosch, Richard E.
Murphy, Brendan B.
Ashourvan, Arian
Vishnubhotla, Ramya
Dickens, Olivia O.
Johnson, A. T. Charlie
Davis, Kathryn A.
Litt, Brian
Bassett, Danielle S.
Takano, Hajime
Vitale, Flavia
author_facet Driscoll, Nicolette
Rosch, Richard E.
Murphy, Brendan B.
Ashourvan, Arian
Vishnubhotla, Ramya
Dickens, Olivia O.
Johnson, A. T. Charlie
Davis, Kathryn A.
Litt, Brian
Bassett, Danielle S.
Takano, Hajime
Vitale, Flavia
author_sort Driscoll, Nicolette
collection PubMed
description Neurological disorders such as epilepsy arise from disrupted brain networks. Our capacity to treat these disorders is limited by our inability to map these networks at sufficient temporal and spatial scales to target interventions. Current best techniques either sample broad areas at low temporal resolution (e.g. calcium imaging) or record from discrete regions at high temporal resolution (e.g. electrophysiology). This limitation hampers our ability to understand and intervene in aberrations of network dynamics. Here we present a technique to map the onset and spatiotemporal spread of acute epileptic seizures in vivo by simultaneously recording high bandwidth microelectrocorticography and calcium fluorescence using transparent graphene microelectrode arrays. We integrate dynamic data features from both modalities using non-negative matrix factorization to identify sequential spatiotemporal patterns of seizure onset and evolution, revealing how the temporal progression of ictal electrophysiology is linked to the spatial evolution of the recruited seizure core. This integrated analysis of multimodal data reveals otherwise hidden state transitions in the spatial and temporal progression of acute seizures. The techniques demonstrated here may enable future targeted therapeutic interventions and novel spatially embedded models of local circuit dynamics during seizure onset and evolution.
format Online
Article
Text
id pubmed-7846732
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-78467322021-02-08 Multimodal in vivo recording using transparent graphene microelectrodes illuminates spatiotemporal seizure dynamics at the microscale Driscoll, Nicolette Rosch, Richard E. Murphy, Brendan B. Ashourvan, Arian Vishnubhotla, Ramya Dickens, Olivia O. Johnson, A. T. Charlie Davis, Kathryn A. Litt, Brian Bassett, Danielle S. Takano, Hajime Vitale, Flavia Commun Biol Article Neurological disorders such as epilepsy arise from disrupted brain networks. Our capacity to treat these disorders is limited by our inability to map these networks at sufficient temporal and spatial scales to target interventions. Current best techniques either sample broad areas at low temporal resolution (e.g. calcium imaging) or record from discrete regions at high temporal resolution (e.g. electrophysiology). This limitation hampers our ability to understand and intervene in aberrations of network dynamics. Here we present a technique to map the onset and spatiotemporal spread of acute epileptic seizures in vivo by simultaneously recording high bandwidth microelectrocorticography and calcium fluorescence using transparent graphene microelectrode arrays. We integrate dynamic data features from both modalities using non-negative matrix factorization to identify sequential spatiotemporal patterns of seizure onset and evolution, revealing how the temporal progression of ictal electrophysiology is linked to the spatial evolution of the recruited seizure core. This integrated analysis of multimodal data reveals otherwise hidden state transitions in the spatial and temporal progression of acute seizures. The techniques demonstrated here may enable future targeted therapeutic interventions and novel spatially embedded models of local circuit dynamics during seizure onset and evolution. Nature Publishing Group UK 2021-01-29 /pmc/articles/PMC7846732/ /pubmed/33514839 http://dx.doi.org/10.1038/s42003-021-01670-9 Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Driscoll, Nicolette
Rosch, Richard E.
Murphy, Brendan B.
Ashourvan, Arian
Vishnubhotla, Ramya
Dickens, Olivia O.
Johnson, A. T. Charlie
Davis, Kathryn A.
Litt, Brian
Bassett, Danielle S.
Takano, Hajime
Vitale, Flavia
Multimodal in vivo recording using transparent graphene microelectrodes illuminates spatiotemporal seizure dynamics at the microscale
title Multimodal in vivo recording using transparent graphene microelectrodes illuminates spatiotemporal seizure dynamics at the microscale
title_full Multimodal in vivo recording using transparent graphene microelectrodes illuminates spatiotemporal seizure dynamics at the microscale
title_fullStr Multimodal in vivo recording using transparent graphene microelectrodes illuminates spatiotemporal seizure dynamics at the microscale
title_full_unstemmed Multimodal in vivo recording using transparent graphene microelectrodes illuminates spatiotemporal seizure dynamics at the microscale
title_short Multimodal in vivo recording using transparent graphene microelectrodes illuminates spatiotemporal seizure dynamics at the microscale
title_sort multimodal in vivo recording using transparent graphene microelectrodes illuminates spatiotemporal seizure dynamics at the microscale
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7846732/
https://www.ncbi.nlm.nih.gov/pubmed/33514839
http://dx.doi.org/10.1038/s42003-021-01670-9
work_keys_str_mv AT driscollnicolette multimodalinvivorecordingusingtransparentgraphenemicroelectrodesilluminatesspatiotemporalseizuredynamicsatthemicroscale
AT roschricharde multimodalinvivorecordingusingtransparentgraphenemicroelectrodesilluminatesspatiotemporalseizuredynamicsatthemicroscale
AT murphybrendanb multimodalinvivorecordingusingtransparentgraphenemicroelectrodesilluminatesspatiotemporalseizuredynamicsatthemicroscale
AT ashourvanarian multimodalinvivorecordingusingtransparentgraphenemicroelectrodesilluminatesspatiotemporalseizuredynamicsatthemicroscale
AT vishnubhotlaramya multimodalinvivorecordingusingtransparentgraphenemicroelectrodesilluminatesspatiotemporalseizuredynamicsatthemicroscale
AT dickensoliviao multimodalinvivorecordingusingtransparentgraphenemicroelectrodesilluminatesspatiotemporalseizuredynamicsatthemicroscale
AT johnsonatcharlie multimodalinvivorecordingusingtransparentgraphenemicroelectrodesilluminatesspatiotemporalseizuredynamicsatthemicroscale
AT daviskathryna multimodalinvivorecordingusingtransparentgraphenemicroelectrodesilluminatesspatiotemporalseizuredynamicsatthemicroscale
AT littbrian multimodalinvivorecordingusingtransparentgraphenemicroelectrodesilluminatesspatiotemporalseizuredynamicsatthemicroscale
AT bassettdanielles multimodalinvivorecordingusingtransparentgraphenemicroelectrodesilluminatesspatiotemporalseizuredynamicsatthemicroscale
AT takanohajime multimodalinvivorecordingusingtransparentgraphenemicroelectrodesilluminatesspatiotemporalseizuredynamicsatthemicroscale
AT vitaleflavia multimodalinvivorecordingusingtransparentgraphenemicroelectrodesilluminatesspatiotemporalseizuredynamicsatthemicroscale