Cargando…
Multimodal in vivo recording using transparent graphene microelectrodes illuminates spatiotemporal seizure dynamics at the microscale
Neurological disorders such as epilepsy arise from disrupted brain networks. Our capacity to treat these disorders is limited by our inability to map these networks at sufficient temporal and spatial scales to target interventions. Current best techniques either sample broad areas at low temporal re...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7846732/ https://www.ncbi.nlm.nih.gov/pubmed/33514839 http://dx.doi.org/10.1038/s42003-021-01670-9 |
_version_ | 1783644791353901056 |
---|---|
author | Driscoll, Nicolette Rosch, Richard E. Murphy, Brendan B. Ashourvan, Arian Vishnubhotla, Ramya Dickens, Olivia O. Johnson, A. T. Charlie Davis, Kathryn A. Litt, Brian Bassett, Danielle S. Takano, Hajime Vitale, Flavia |
author_facet | Driscoll, Nicolette Rosch, Richard E. Murphy, Brendan B. Ashourvan, Arian Vishnubhotla, Ramya Dickens, Olivia O. Johnson, A. T. Charlie Davis, Kathryn A. Litt, Brian Bassett, Danielle S. Takano, Hajime Vitale, Flavia |
author_sort | Driscoll, Nicolette |
collection | PubMed |
description | Neurological disorders such as epilepsy arise from disrupted brain networks. Our capacity to treat these disorders is limited by our inability to map these networks at sufficient temporal and spatial scales to target interventions. Current best techniques either sample broad areas at low temporal resolution (e.g. calcium imaging) or record from discrete regions at high temporal resolution (e.g. electrophysiology). This limitation hampers our ability to understand and intervene in aberrations of network dynamics. Here we present a technique to map the onset and spatiotemporal spread of acute epileptic seizures in vivo by simultaneously recording high bandwidth microelectrocorticography and calcium fluorescence using transparent graphene microelectrode arrays. We integrate dynamic data features from both modalities using non-negative matrix factorization to identify sequential spatiotemporal patterns of seizure onset and evolution, revealing how the temporal progression of ictal electrophysiology is linked to the spatial evolution of the recruited seizure core. This integrated analysis of multimodal data reveals otherwise hidden state transitions in the spatial and temporal progression of acute seizures. The techniques demonstrated here may enable future targeted therapeutic interventions and novel spatially embedded models of local circuit dynamics during seizure onset and evolution. |
format | Online Article Text |
id | pubmed-7846732 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-78467322021-02-08 Multimodal in vivo recording using transparent graphene microelectrodes illuminates spatiotemporal seizure dynamics at the microscale Driscoll, Nicolette Rosch, Richard E. Murphy, Brendan B. Ashourvan, Arian Vishnubhotla, Ramya Dickens, Olivia O. Johnson, A. T. Charlie Davis, Kathryn A. Litt, Brian Bassett, Danielle S. Takano, Hajime Vitale, Flavia Commun Biol Article Neurological disorders such as epilepsy arise from disrupted brain networks. Our capacity to treat these disorders is limited by our inability to map these networks at sufficient temporal and spatial scales to target interventions. Current best techniques either sample broad areas at low temporal resolution (e.g. calcium imaging) or record from discrete regions at high temporal resolution (e.g. electrophysiology). This limitation hampers our ability to understand and intervene in aberrations of network dynamics. Here we present a technique to map the onset and spatiotemporal spread of acute epileptic seizures in vivo by simultaneously recording high bandwidth microelectrocorticography and calcium fluorescence using transparent graphene microelectrode arrays. We integrate dynamic data features from both modalities using non-negative matrix factorization to identify sequential spatiotemporal patterns of seizure onset and evolution, revealing how the temporal progression of ictal electrophysiology is linked to the spatial evolution of the recruited seizure core. This integrated analysis of multimodal data reveals otherwise hidden state transitions in the spatial and temporal progression of acute seizures. The techniques demonstrated here may enable future targeted therapeutic interventions and novel spatially embedded models of local circuit dynamics during seizure onset and evolution. Nature Publishing Group UK 2021-01-29 /pmc/articles/PMC7846732/ /pubmed/33514839 http://dx.doi.org/10.1038/s42003-021-01670-9 Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Driscoll, Nicolette Rosch, Richard E. Murphy, Brendan B. Ashourvan, Arian Vishnubhotla, Ramya Dickens, Olivia O. Johnson, A. T. Charlie Davis, Kathryn A. Litt, Brian Bassett, Danielle S. Takano, Hajime Vitale, Flavia Multimodal in vivo recording using transparent graphene microelectrodes illuminates spatiotemporal seizure dynamics at the microscale |
title | Multimodal in vivo recording using transparent graphene microelectrodes illuminates spatiotemporal seizure dynamics at the microscale |
title_full | Multimodal in vivo recording using transparent graphene microelectrodes illuminates spatiotemporal seizure dynamics at the microscale |
title_fullStr | Multimodal in vivo recording using transparent graphene microelectrodes illuminates spatiotemporal seizure dynamics at the microscale |
title_full_unstemmed | Multimodal in vivo recording using transparent graphene microelectrodes illuminates spatiotemporal seizure dynamics at the microscale |
title_short | Multimodal in vivo recording using transparent graphene microelectrodes illuminates spatiotemporal seizure dynamics at the microscale |
title_sort | multimodal in vivo recording using transparent graphene microelectrodes illuminates spatiotemporal seizure dynamics at the microscale |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7846732/ https://www.ncbi.nlm.nih.gov/pubmed/33514839 http://dx.doi.org/10.1038/s42003-021-01670-9 |
work_keys_str_mv | AT driscollnicolette multimodalinvivorecordingusingtransparentgraphenemicroelectrodesilluminatesspatiotemporalseizuredynamicsatthemicroscale AT roschricharde multimodalinvivorecordingusingtransparentgraphenemicroelectrodesilluminatesspatiotemporalseizuredynamicsatthemicroscale AT murphybrendanb multimodalinvivorecordingusingtransparentgraphenemicroelectrodesilluminatesspatiotemporalseizuredynamicsatthemicroscale AT ashourvanarian multimodalinvivorecordingusingtransparentgraphenemicroelectrodesilluminatesspatiotemporalseizuredynamicsatthemicroscale AT vishnubhotlaramya multimodalinvivorecordingusingtransparentgraphenemicroelectrodesilluminatesspatiotemporalseizuredynamicsatthemicroscale AT dickensoliviao multimodalinvivorecordingusingtransparentgraphenemicroelectrodesilluminatesspatiotemporalseizuredynamicsatthemicroscale AT johnsonatcharlie multimodalinvivorecordingusingtransparentgraphenemicroelectrodesilluminatesspatiotemporalseizuredynamicsatthemicroscale AT daviskathryna multimodalinvivorecordingusingtransparentgraphenemicroelectrodesilluminatesspatiotemporalseizuredynamicsatthemicroscale AT littbrian multimodalinvivorecordingusingtransparentgraphenemicroelectrodesilluminatesspatiotemporalseizuredynamicsatthemicroscale AT bassettdanielles multimodalinvivorecordingusingtransparentgraphenemicroelectrodesilluminatesspatiotemporalseizuredynamicsatthemicroscale AT takanohajime multimodalinvivorecordingusingtransparentgraphenemicroelectrodesilluminatesspatiotemporalseizuredynamicsatthemicroscale AT vitaleflavia multimodalinvivorecordingusingtransparentgraphenemicroelectrodesilluminatesspatiotemporalseizuredynamicsatthemicroscale |