Cargando…
Artificial intelligence in sepsis early prediction and diagnosis using unstructured data in healthcare
Sepsis is a leading cause of death in hospitals. Early prediction and diagnosis of sepsis, which is critical in reducing mortality, is challenging as many of its signs and symptoms are similar to other less critical conditions. We develop an artificial intelligence algorithm, SERA algorithm, which u...
Autores principales: | Goh, Kim Huat, Wang, Le, Yeow, Adrian Yong Kwang, Poh, Hermione, Li, Ke, Yeow, Joannas Jie Lin, Tan, Gamaliel Yu Heng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7846756/ https://www.ncbi.nlm.nih.gov/pubmed/33514699 http://dx.doi.org/10.1038/s41467-021-20910-4 |
Ejemplares similares
-
Habit and Automaticity in Medical Alert Override: Cohort Study
por: Wang, Le, et al.
Publicado: (2022) -
Prediction of Readmission in Geriatric Patients From Clinical Notes: Retrospective Text Mining Study
por: Goh, Kim Huat, et al.
Publicado: (2021) -
IMPACT OF COVID-19 MOVEMENT CONTROL ON OLDER ADULTS’ HEALTHCARE UTILIZATION
por: Tan, Vanessa, et al.
Publicado: (2022) -
Artificial Intelligence for Unstructured Healthcare Data: Application to Coding of Patient Reporting of Adverse Drug Reactions
por: Létinier, Louis, et al.
Publicado: (2021) -
Tapping into unstructured data: integrating unstructured data and textual analytics into business intelligence
por: Inmon, William H, et al.
Publicado: (2008)