Cargando…
Verifying explainability of a deep learning tissue classifier trained on RNA-seq data
For complex machine learning (ML) algorithms to gain widespread acceptance in decision making, we must be able to identify the features driving the predictions. Explainability models allow transparency of ML algorithms, however their reliability within high-dimensional data is unclear. To test the r...
Autores principales: | Yap, Melvyn, Johnston, Rebecca L., Foley, Helena, MacDonald, Samual, Kondrashova, Olga, Tran, Khoa A., Nones, Katia, Koufariotis, Lambros T., Bean, Cameron, Pearson, John V., Trzaskowski, Maciej, Waddell, Nicola |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7846764/ https://www.ncbi.nlm.nih.gov/pubmed/33514769 http://dx.doi.org/10.1038/s41598-021-81773-9 |
Ejemplares similares
-
Generalising uncertainty improves accuracy and safety of deep learning analytics applied to oncology
por: MacDonald, Samual, et al.
Publicado: (2023) -
Performance of tumour microenvironment deconvolution methods in breast cancer using single-cell simulated bulk mixtures
por: Tran, Khoa A., et al.
Publicado: (2023) -
Variance explained by whole genome sequence variants in coding and regulatory genome annotations for six dairy traits
por: Koufariotis, Lambros T., et al.
Publicado: (2018) -
Pathogenic germline variants are associated with poor survival in stage III/IV melanoma patients
por: Aoude, Lauren G., et al.
Publicado: (2020) -
Dependable modulation classifier explainer with measurable explainability
por: Duggal, Gaurav, et al.
Publicado: (2023)