Cargando…
Single-cell transcriptomics following ischemic injury identifies a role for B2M in cardiac repair
The efficiency of the repair process following ischemic cardiac injury is a crucial determinant for the progression into heart failure and is controlled by both intra- and intercellular signaling within the heart. An enhanced understanding of this complex interplay will enable better exploitation of...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7846780/ https://www.ncbi.nlm.nih.gov/pubmed/33514846 http://dx.doi.org/10.1038/s42003-020-01636-3 |
_version_ | 1783644802793865216 |
---|---|
author | Molenaar, Bas Timmer, Louk T. Droog, Marjolein Perini, Ilaria Versteeg, Danielle Kooijman, Lieneke Monshouwer-Kloots, Jantine de Ruiter, Hesther Gladka, Monika M. van Rooij, Eva |
author_facet | Molenaar, Bas Timmer, Louk T. Droog, Marjolein Perini, Ilaria Versteeg, Danielle Kooijman, Lieneke Monshouwer-Kloots, Jantine de Ruiter, Hesther Gladka, Monika M. van Rooij, Eva |
author_sort | Molenaar, Bas |
collection | PubMed |
description | The efficiency of the repair process following ischemic cardiac injury is a crucial determinant for the progression into heart failure and is controlled by both intra- and intercellular signaling within the heart. An enhanced understanding of this complex interplay will enable better exploitation of these mechanisms for therapeutic use. We used single-cell transcriptomics to collect gene expression data of all main cardiac cell types at different time-points after ischemic injury. These data unveiled cellular and transcriptional heterogeneity and changes in cellular function during cardiac remodeling. Furthermore, we established potential intercellular communication networks after ischemic injury. Follow up experiments confirmed that cardiomyocytes express and secrete elevated levels of beta-2 microglobulin in response to ischemic damage, which can activate fibroblasts in a paracrine manner. Collectively, our data indicate phase-specific changes in cellular heterogeneity during different stages of cardiac remodeling and allow for the identification of therapeutic targets relevant for cardiac repair. |
format | Online Article Text |
id | pubmed-7846780 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-78467802021-02-08 Single-cell transcriptomics following ischemic injury identifies a role for B2M in cardiac repair Molenaar, Bas Timmer, Louk T. Droog, Marjolein Perini, Ilaria Versteeg, Danielle Kooijman, Lieneke Monshouwer-Kloots, Jantine de Ruiter, Hesther Gladka, Monika M. van Rooij, Eva Commun Biol Article The efficiency of the repair process following ischemic cardiac injury is a crucial determinant for the progression into heart failure and is controlled by both intra- and intercellular signaling within the heart. An enhanced understanding of this complex interplay will enable better exploitation of these mechanisms for therapeutic use. We used single-cell transcriptomics to collect gene expression data of all main cardiac cell types at different time-points after ischemic injury. These data unveiled cellular and transcriptional heterogeneity and changes in cellular function during cardiac remodeling. Furthermore, we established potential intercellular communication networks after ischemic injury. Follow up experiments confirmed that cardiomyocytes express and secrete elevated levels of beta-2 microglobulin in response to ischemic damage, which can activate fibroblasts in a paracrine manner. Collectively, our data indicate phase-specific changes in cellular heterogeneity during different stages of cardiac remodeling and allow for the identification of therapeutic targets relevant for cardiac repair. Nature Publishing Group UK 2021-01-29 /pmc/articles/PMC7846780/ /pubmed/33514846 http://dx.doi.org/10.1038/s42003-020-01636-3 Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Molenaar, Bas Timmer, Louk T. Droog, Marjolein Perini, Ilaria Versteeg, Danielle Kooijman, Lieneke Monshouwer-Kloots, Jantine de Ruiter, Hesther Gladka, Monika M. van Rooij, Eva Single-cell transcriptomics following ischemic injury identifies a role for B2M in cardiac repair |
title | Single-cell transcriptomics following ischemic injury identifies a role for B2M in cardiac repair |
title_full | Single-cell transcriptomics following ischemic injury identifies a role for B2M in cardiac repair |
title_fullStr | Single-cell transcriptomics following ischemic injury identifies a role for B2M in cardiac repair |
title_full_unstemmed | Single-cell transcriptomics following ischemic injury identifies a role for B2M in cardiac repair |
title_short | Single-cell transcriptomics following ischemic injury identifies a role for B2M in cardiac repair |
title_sort | single-cell transcriptomics following ischemic injury identifies a role for b2m in cardiac repair |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7846780/ https://www.ncbi.nlm.nih.gov/pubmed/33514846 http://dx.doi.org/10.1038/s42003-020-01636-3 |
work_keys_str_mv | AT molenaarbas singlecelltranscriptomicsfollowingischemicinjuryidentifiesaroleforb2mincardiacrepair AT timmerloukt singlecelltranscriptomicsfollowingischemicinjuryidentifiesaroleforb2mincardiacrepair AT droogmarjolein singlecelltranscriptomicsfollowingischemicinjuryidentifiesaroleforb2mincardiacrepair AT periniilaria singlecelltranscriptomicsfollowingischemicinjuryidentifiesaroleforb2mincardiacrepair AT versteegdanielle singlecelltranscriptomicsfollowingischemicinjuryidentifiesaroleforb2mincardiacrepair AT kooijmanlieneke singlecelltranscriptomicsfollowingischemicinjuryidentifiesaroleforb2mincardiacrepair AT monshouwerklootsjantine singlecelltranscriptomicsfollowingischemicinjuryidentifiesaroleforb2mincardiacrepair AT deruiterhesther singlecelltranscriptomicsfollowingischemicinjuryidentifiesaroleforb2mincardiacrepair AT gladkamonikam singlecelltranscriptomicsfollowingischemicinjuryidentifiesaroleforb2mincardiacrepair AT vanrooijeva singlecelltranscriptomicsfollowingischemicinjuryidentifiesaroleforb2mincardiacrepair |