Cargando…

Multi-omic regulatory networks capture downstream effects of kinase inhibition in Mycobacterium tuberculosis

The ability of Mycobacterium tuberculosis (Mtb) to adapt to diverse stresses in its host environment is crucial for pathogenesis. Two essential Mtb serine/threonine protein kinases, PknA and PknB, regulate cell growth in response to environmental stimuli, but little is known about their downstream e...

Descripción completa

Detalles Bibliográficos
Autores principales: Young, Albert T., Carette, Xavier, Helmel, Michaela, Steen, Hanno, Husson, Robert N., Quackenbush, John, Platig, John
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7846781/
https://www.ncbi.nlm.nih.gov/pubmed/33514755
http://dx.doi.org/10.1038/s41540-020-00164-4
Descripción
Sumario:The ability of Mycobacterium tuberculosis (Mtb) to adapt to diverse stresses in its host environment is crucial for pathogenesis. Two essential Mtb serine/threonine protein kinases, PknA and PknB, regulate cell growth in response to environmental stimuli, but little is known about their downstream effects. By combining RNA-Seq data, following treatment with either an inhibitor of both PknA and PknB or an inactive control, with publicly available ChIP-Seq and protein–protein interaction data for transcription factors, we show that the Mtb transcription factor (TF) regulatory network propagates the effects of kinase inhibition and leads to widespread changes in regulatory programs involved in cell wall integrity, stress response, and energy production, among others. We also observe that changes in TF regulatory activity correlate with kinase-specific phosphorylation of those TFs. In addition to characterizing the downstream regulatory effects of PknA/PknB inhibition, this demonstrates the need for regulatory network approaches that can incorporate signal-driven transcription factor modifications.