Cargando…
Upscaling the porosity–permeability relationship of a microporous carbonate for Darcy-scale flow with machine learning
The permeability of a pore structure is typically described by stochastic representations of its geometrical attributes (e.g. pore-size distribution, porosity, coordination number). Database-driven numerical solvers for large model domains can only accurately predict large-scale flow behavior when t...
Autores principales: | Menke, H. P., Maes, J., Geiger, S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7846807/ https://www.ncbi.nlm.nih.gov/pubmed/33514764 http://dx.doi.org/10.1038/s41598-021-82029-2 |
Ejemplares similares
-
Incorporating Variable Porosity into the Determination of Effective Permeability in Interchanging Double Cloth Woven Fabrics Using Darcy’s Law
por: Kalazić, Ana, et al.
Publicado: (2023) -
Stacked ensemble machine learning for porosity and absolute permeability prediction of carbonate rock plugs
por: Kalule, Ramanzani, et al.
Publicado: (2023) -
Assessing Porous Media Permeability in Non-Darcy Flow: A Re-Evaluation Based on the Forchheimer Equation
por: Tupin, Simon, et al.
Publicado: (2020) -
Factors Influencing NO(2) Adsorption/Reduction on Microporous Activated Carbon: Porosity vs. Surface Chemistry
por: Ghouma, Imen, et al.
Publicado: (2018) -
Three-dimensional rotating flow of carbon nanotubes with Darcy-Forchheimer porous medium
por: Hayat, Tasawar, et al.
Publicado: (2017)