Cargando…
Data-driven biological network alignment that uses topological, sequence, and functional information
BACKGROUND: Network alignment (NA) can transfer functional knowledge between species’ conserved biological network regions. Traditional NA assumes that it is topological similarity (isomorphic-like matching) between network regions that corresponds to the regions’ functional relatedness. However, we...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7847157/ https://www.ncbi.nlm.nih.gov/pubmed/33514304 http://dx.doi.org/10.1186/s12859-021-03971-6 |
_version_ | 1783644875176017920 |
---|---|
author | Gu, Shawn Milenković, Tijana |
author_facet | Gu, Shawn Milenković, Tijana |
author_sort | Gu, Shawn |
collection | PubMed |
description | BACKGROUND: Network alignment (NA) can transfer functional knowledge between species’ conserved biological network regions. Traditional NA assumes that it is topological similarity (isomorphic-like matching) between network regions that corresponds to the regions’ functional relatedness. However, we recently found that functionally unrelated proteins are as topologically similar as functionally related proteins. So, we redefined NA as a data-driven method called TARA, which learns from network and protein functional data what kind of topological relatedness (rather than similarity) between proteins corresponds to their functional relatedness. TARA used topological information (within each network) but not sequence information (between proteins across networks). Yet, TARA yielded higher protein functional prediction accuracy than existing NA methods, even those that used both topological and sequence information. RESULTS: Here, we propose TARA++ that is also data-driven, like TARA and unlike other existing methods, but that uses across-network sequence information on top of within-network topological information, unlike TARA. To deal with the within-and-across-network analysis, we adapt social network embedding to the problem of biological NA. TARA++ outperforms protein functional prediction accuracy of existing methods. CONCLUSIONS: As such, combining research knowledge from different domains is promising. Overall, improvements in protein functional prediction have biomedical implications, for example allowing researchers to better understand how cancer progresses or how humans age. |
format | Online Article Text |
id | pubmed-7847157 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-78471572021-02-01 Data-driven biological network alignment that uses topological, sequence, and functional information Gu, Shawn Milenković, Tijana BMC Bioinformatics Methodology Article BACKGROUND: Network alignment (NA) can transfer functional knowledge between species’ conserved biological network regions. Traditional NA assumes that it is topological similarity (isomorphic-like matching) between network regions that corresponds to the regions’ functional relatedness. However, we recently found that functionally unrelated proteins are as topologically similar as functionally related proteins. So, we redefined NA as a data-driven method called TARA, which learns from network and protein functional data what kind of topological relatedness (rather than similarity) between proteins corresponds to their functional relatedness. TARA used topological information (within each network) but not sequence information (between proteins across networks). Yet, TARA yielded higher protein functional prediction accuracy than existing NA methods, even those that used both topological and sequence information. RESULTS: Here, we propose TARA++ that is also data-driven, like TARA and unlike other existing methods, but that uses across-network sequence information on top of within-network topological information, unlike TARA. To deal with the within-and-across-network analysis, we adapt social network embedding to the problem of biological NA. TARA++ outperforms protein functional prediction accuracy of existing methods. CONCLUSIONS: As such, combining research knowledge from different domains is promising. Overall, improvements in protein functional prediction have biomedical implications, for example allowing researchers to better understand how cancer progresses or how humans age. BioMed Central 2021-01-29 /pmc/articles/PMC7847157/ /pubmed/33514304 http://dx.doi.org/10.1186/s12859-021-03971-6 Text en © The Author(s) 2021 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Methodology Article Gu, Shawn Milenković, Tijana Data-driven biological network alignment that uses topological, sequence, and functional information |
title | Data-driven biological network alignment that uses topological, sequence, and functional information |
title_full | Data-driven biological network alignment that uses topological, sequence, and functional information |
title_fullStr | Data-driven biological network alignment that uses topological, sequence, and functional information |
title_full_unstemmed | Data-driven biological network alignment that uses topological, sequence, and functional information |
title_short | Data-driven biological network alignment that uses topological, sequence, and functional information |
title_sort | data-driven biological network alignment that uses topological, sequence, and functional information |
topic | Methodology Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7847157/ https://www.ncbi.nlm.nih.gov/pubmed/33514304 http://dx.doi.org/10.1186/s12859-021-03971-6 |
work_keys_str_mv | AT gushawn datadrivenbiologicalnetworkalignmentthatusestopologicalsequenceandfunctionalinformation AT milenkovictijana datadrivenbiologicalnetworkalignmentthatusestopologicalsequenceandfunctionalinformation |