Cargando…

A New Implementation of Genome Rearrangement Problem

Unsigned reverse genome rearrangement is an important part of bioinformatics research, which is widely used in biological similarity and homology analysis, revealing biological inheritance, variation, and evolution. Branch and bound, simulated annealing, and other algorithms in unsigned reverse geno...

Descripción completa

Detalles Bibliográficos
Autores principales: Jing, Xiaoqian, Shi, Haihe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7847324/
https://www.ncbi.nlm.nih.gov/pubmed/33552456
http://dx.doi.org/10.1155/2021/6692775
Descripción
Sumario:Unsigned reverse genome rearrangement is an important part of bioinformatics research, which is widely used in biological similarity and homology analysis, revealing biological inheritance, variation, and evolution. Branch and bound, simulated annealing, and other algorithms in unsigned reverse genome rearrangement algorithm are rare in practical application because of their huge time and space consumption, and greedy algorithms are mostly used at present. By deeply analyzing the domain of unsigned reverse genome rearrangement algorithm based on greedy strategy (unsigned reverse genome rearrangement algorithm (URGRA) based on greedy strategy), the domain features are modeled, and the URGRA algorithm components are interactively designed according to the production programming method. With the support of the PAR platform, the algorithm component library of the URGRA is formally realized, and the concrete algorithm is generated by assembly, which improves the reliability of the assembly algorithm.