Cargando…
Mitochondrial bioenergetic deficits in C9orf72 amyotrophic lateral sclerosis motor neurons cause dysfunctional axonal homeostasis
Axonal dysfunction is a common phenotype in neurodegenerative disorders, including in amyotrophic lateral sclerosis (ALS), where the key pathological cell-type, the motor neuron (MN), has an axon extending up to a metre long. The maintenance of axonal function is a highly energy-demanding process, r...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7847443/ https://www.ncbi.nlm.nih.gov/pubmed/33398403 http://dx.doi.org/10.1007/s00401-020-02252-5 |
_version_ | 1783644933954994176 |
---|---|
author | Mehta, Arpan R. Gregory, Jenna M. Dando, Owen Carter, Roderick N. Burr, Karen Nanda, Jyoti Story, David McDade, Karina Smith, Colin Morton, Nicholas M. Mahad, Don J. Hardingham, Giles E. Chandran, Siddharthan Selvaraj, Bhuvaneish T. |
author_facet | Mehta, Arpan R. Gregory, Jenna M. Dando, Owen Carter, Roderick N. Burr, Karen Nanda, Jyoti Story, David McDade, Karina Smith, Colin Morton, Nicholas M. Mahad, Don J. Hardingham, Giles E. Chandran, Siddharthan Selvaraj, Bhuvaneish T. |
author_sort | Mehta, Arpan R. |
collection | PubMed |
description | Axonal dysfunction is a common phenotype in neurodegenerative disorders, including in amyotrophic lateral sclerosis (ALS), where the key pathological cell-type, the motor neuron (MN), has an axon extending up to a metre long. The maintenance of axonal function is a highly energy-demanding process, raising the question of whether MN cellular energetics is perturbed in ALS, and whether its recovery promotes axonal rescue. To address this, we undertook cellular and molecular interrogation of multiple patient-derived induced pluripotent stem cell lines and patient autopsy samples harbouring the most common ALS causing mutation, C9orf72. Using paired mutant and isogenic expansion-corrected controls, we show that C9orf72 MNs have shorter axons, impaired fast axonal transport of mitochondrial cargo, and altered mitochondrial bioenergetic function. RNAseq revealed reduced gene expression of mitochondrially encoded electron transport chain transcripts, with neuropathological analysis of C9orf72-ALS post-mortem tissue importantly confirming selective dysregulation of the mitochondrially encoded transcripts in ventral horn spinal MNs, but not in corresponding dorsal horn sensory neurons, with findings reflected at the protein level. Mitochondrial DNA copy number was unaltered, both in vitro and in human post-mortem tissue. Genetic manipulation of mitochondrial biogenesis in C9orf72 MNs corrected the bioenergetic deficit and also rescued the axonal length and transport phenotypes. Collectively, our data show that loss of mitochondrial function is a key mediator of axonal dysfunction in C9orf72-ALS, and that boosting MN bioenergetics is sufficient to restore axonal homeostasis, opening new potential therapeutic strategies for ALS that target mitochondrial function. SUPPLEMENTARY INFORMATION: The online version of this article (10.1007/s00401-020-02252-5) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-7847443 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-78474432021-02-08 Mitochondrial bioenergetic deficits in C9orf72 amyotrophic lateral sclerosis motor neurons cause dysfunctional axonal homeostasis Mehta, Arpan R. Gregory, Jenna M. Dando, Owen Carter, Roderick N. Burr, Karen Nanda, Jyoti Story, David McDade, Karina Smith, Colin Morton, Nicholas M. Mahad, Don J. Hardingham, Giles E. Chandran, Siddharthan Selvaraj, Bhuvaneish T. Acta Neuropathol Original Paper Axonal dysfunction is a common phenotype in neurodegenerative disorders, including in amyotrophic lateral sclerosis (ALS), where the key pathological cell-type, the motor neuron (MN), has an axon extending up to a metre long. The maintenance of axonal function is a highly energy-demanding process, raising the question of whether MN cellular energetics is perturbed in ALS, and whether its recovery promotes axonal rescue. To address this, we undertook cellular and molecular interrogation of multiple patient-derived induced pluripotent stem cell lines and patient autopsy samples harbouring the most common ALS causing mutation, C9orf72. Using paired mutant and isogenic expansion-corrected controls, we show that C9orf72 MNs have shorter axons, impaired fast axonal transport of mitochondrial cargo, and altered mitochondrial bioenergetic function. RNAseq revealed reduced gene expression of mitochondrially encoded electron transport chain transcripts, with neuropathological analysis of C9orf72-ALS post-mortem tissue importantly confirming selective dysregulation of the mitochondrially encoded transcripts in ventral horn spinal MNs, but not in corresponding dorsal horn sensory neurons, with findings reflected at the protein level. Mitochondrial DNA copy number was unaltered, both in vitro and in human post-mortem tissue. Genetic manipulation of mitochondrial biogenesis in C9orf72 MNs corrected the bioenergetic deficit and also rescued the axonal length and transport phenotypes. Collectively, our data show that loss of mitochondrial function is a key mediator of axonal dysfunction in C9orf72-ALS, and that boosting MN bioenergetics is sufficient to restore axonal homeostasis, opening new potential therapeutic strategies for ALS that target mitochondrial function. SUPPLEMENTARY INFORMATION: The online version of this article (10.1007/s00401-020-02252-5) contains supplementary material, which is available to authorized users. Springer Berlin Heidelberg 2021-01-04 2021 /pmc/articles/PMC7847443/ /pubmed/33398403 http://dx.doi.org/10.1007/s00401-020-02252-5 Text en © The Author(s) 2021 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Original Paper Mehta, Arpan R. Gregory, Jenna M. Dando, Owen Carter, Roderick N. Burr, Karen Nanda, Jyoti Story, David McDade, Karina Smith, Colin Morton, Nicholas M. Mahad, Don J. Hardingham, Giles E. Chandran, Siddharthan Selvaraj, Bhuvaneish T. Mitochondrial bioenergetic deficits in C9orf72 amyotrophic lateral sclerosis motor neurons cause dysfunctional axonal homeostasis |
title | Mitochondrial bioenergetic deficits in C9orf72 amyotrophic lateral sclerosis motor neurons cause dysfunctional axonal homeostasis |
title_full | Mitochondrial bioenergetic deficits in C9orf72 amyotrophic lateral sclerosis motor neurons cause dysfunctional axonal homeostasis |
title_fullStr | Mitochondrial bioenergetic deficits in C9orf72 amyotrophic lateral sclerosis motor neurons cause dysfunctional axonal homeostasis |
title_full_unstemmed | Mitochondrial bioenergetic deficits in C9orf72 amyotrophic lateral sclerosis motor neurons cause dysfunctional axonal homeostasis |
title_short | Mitochondrial bioenergetic deficits in C9orf72 amyotrophic lateral sclerosis motor neurons cause dysfunctional axonal homeostasis |
title_sort | mitochondrial bioenergetic deficits in c9orf72 amyotrophic lateral sclerosis motor neurons cause dysfunctional axonal homeostasis |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7847443/ https://www.ncbi.nlm.nih.gov/pubmed/33398403 http://dx.doi.org/10.1007/s00401-020-02252-5 |
work_keys_str_mv | AT mehtaarpanr mitochondrialbioenergeticdeficitsinc9orf72amyotrophiclateralsclerosismotorneuronscausedysfunctionalaxonalhomeostasis AT gregoryjennam mitochondrialbioenergeticdeficitsinc9orf72amyotrophiclateralsclerosismotorneuronscausedysfunctionalaxonalhomeostasis AT dandoowen mitochondrialbioenergeticdeficitsinc9orf72amyotrophiclateralsclerosismotorneuronscausedysfunctionalaxonalhomeostasis AT carterroderickn mitochondrialbioenergeticdeficitsinc9orf72amyotrophiclateralsclerosismotorneuronscausedysfunctionalaxonalhomeostasis AT burrkaren mitochondrialbioenergeticdeficitsinc9orf72amyotrophiclateralsclerosismotorneuronscausedysfunctionalaxonalhomeostasis AT nandajyoti mitochondrialbioenergeticdeficitsinc9orf72amyotrophiclateralsclerosismotorneuronscausedysfunctionalaxonalhomeostasis AT storydavid mitochondrialbioenergeticdeficitsinc9orf72amyotrophiclateralsclerosismotorneuronscausedysfunctionalaxonalhomeostasis AT mcdadekarina mitochondrialbioenergeticdeficitsinc9orf72amyotrophiclateralsclerosismotorneuronscausedysfunctionalaxonalhomeostasis AT smithcolin mitochondrialbioenergeticdeficitsinc9orf72amyotrophiclateralsclerosismotorneuronscausedysfunctionalaxonalhomeostasis AT mortonnicholasm mitochondrialbioenergeticdeficitsinc9orf72amyotrophiclateralsclerosismotorneuronscausedysfunctionalaxonalhomeostasis AT mahaddonj mitochondrialbioenergeticdeficitsinc9orf72amyotrophiclateralsclerosismotorneuronscausedysfunctionalaxonalhomeostasis AT hardinghamgilese mitochondrialbioenergeticdeficitsinc9orf72amyotrophiclateralsclerosismotorneuronscausedysfunctionalaxonalhomeostasis AT chandransiddharthan mitochondrialbioenergeticdeficitsinc9orf72amyotrophiclateralsclerosismotorneuronscausedysfunctionalaxonalhomeostasis AT selvarajbhuvaneisht mitochondrialbioenergeticdeficitsinc9orf72amyotrophiclateralsclerosismotorneuronscausedysfunctionalaxonalhomeostasis |