Cargando…
Model order reduction of thermo-mechanical models with parametric convective boundary conditions: focus on machine tools
Thermo-mechanical finite element (FE) models predict the thermal behavior of machine tools and the associated mechanical deviations. However, one disadvantage is their high computational expense, linked to the evaluation of the large systems of differential equations. Therefore, projection-based mod...
Autores principales: | Hernández-Becerro, Pablo, Spescha, Daniel, Wegener, Konrad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7847468/ https://www.ncbi.nlm.nih.gov/pubmed/33568878 http://dx.doi.org/10.1007/s00466-020-01926-x |
Ejemplares similares
-
The impact of parametrized convection on cloud feedback
por: Webb, Mark J., et al.
Publicado: (2015) -
Efficient parametric analysis of the chemical master equation through model order reduction
por: Waldherr, Steffen, et al.
Publicado: (2012) -
Machine learning for model order reduction
por: Mohamed, Khaled Salah
Publicado: (2018) -
Design and Parametric Study of the Magnetic Sensor for Position Detection in Linear Motor Based on Nonlinear Parametric Model Order Reduction
por: Paul, Sarbajit, et al.
Publicado: (2017) -
Modeling second-order boundary perception: A machine learning approach
por: DiMattina, Christopher, et al.
Publicado: (2019)