Cargando…
Integrating Somatic Mutations for Breast Cancer Survival Prediction Using Machine Learning Methods
Breast cancer is the most common malignancy in women, and because it has a high mortality rate, it is urgent to develop computational methods to increase the accuracy of breast cancer survival predictive models. Although multi-omics data such as gene expression have been extensively used in recent s...
Autores principales: | He, Zongzhen, Zhang, Junying, Yuan, Xiguo, Zhang, Yuanyuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7848170/ https://www.ncbi.nlm.nih.gov/pubmed/33537063 http://dx.doi.org/10.3389/fgene.2020.632901 |
Ejemplares similares
-
Network based stratification of major cancers by integrating somatic mutation and gene expression data
por: He, Zongzhen, et al.
Publicado: (2017) -
Stratification of Breast Cancer by Integrating Gene Expression Data and Clinical Variables
por: He, Zongzhen, et al.
Publicado: (2019) -
Predicting Cancer Tissue-of-Origin by a Machine Learning Method Using DNA Somatic Mutation Data
por: Liu, Xiaojun, et al.
Publicado: (2020) -
RKDOSCNV: A Local Kernel Density-Based Approach to the Detection of Copy Number Variations by Using Next-Generation Sequencing Data
por: Liu, Guojun, et al.
Publicado: (2020) -
Author Correction: Niche harmony search algorithm for detecting complex disease associated high-order SNP combinations
por: Tuo, Shouheng, et al.
Publicado: (2018)