Cargando…
Silencing Artemis Enhances Colorectal Cancer Cell Sensitivity to DNA-Damaging Agents
Artemis is a key protein of NHEJ (nonhomologous end joining), which is the major pathway for the repair of IR-induced DSBs in mammalian cells. However, the expression of Artemis in tumors and the influence of silencing Artemis on tumor sensitivity to radiation have not been investigated fully. In th...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cognizant Communication Corporation
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7848410/ https://www.ncbi.nlm.nih.gov/pubmed/29426373 http://dx.doi.org/10.3727/096504018X15179694020751 |
_version_ | 1783645130313433088 |
---|---|
author | Liu, Hai Wang, Xuanxuan Huang, Aihua Gao, Huaping Sun, Yikan Jiang, Tingting Shi, Liming Wu, Xianjie Dong, Qinghua Sun, Xiaonan |
author_facet | Liu, Hai Wang, Xuanxuan Huang, Aihua Gao, Huaping Sun, Yikan Jiang, Tingting Shi, Liming Wu, Xianjie Dong, Qinghua Sun, Xiaonan |
author_sort | Liu, Hai |
collection | PubMed |
description | Artemis is a key protein of NHEJ (nonhomologous end joining), which is the major pathway for the repair of IR-induced DSBs in mammalian cells. However, the expression of Artemis in tumors and the influence of silencing Artemis on tumor sensitivity to radiation have not been investigated fully. In this study, we investigated how the expression levels of Artemis may affect the treatment outcome of radiotherapy and chemotherapy in colorectal cancer cells. First, we found that the expression of Artemis is strong in some human rectal cancer samples, being higher than in adjacent normal tissues using immunohistochemical staining. We then knocked down Artemis gene in a human colorectal cancer cell line (RKO) using lentivirus-mediated siRNAs. Compared to the control RKO cells, the Artemis knockdown cells showed significantly increased sensitivity to bleomycin, etoposide, camptothecin, and IR. Induced by DNA-damaging agents, delayed DNA repair kinetics was found by the γ-H2AX foci assay, and a significantly increased cell apoptosis occurred in the Artemis knockdown RKO cells through apoptosis detection methods and Western blot. We also found that the p53/p21 signaling pathway may be involved in the apoptosis process. Taken together, our study indicates that manipulating Artemis can enhance colorectal cancer cell sensitivity to DNA-damaging agents. Therefore, Artemis can serve as a therapeutic target in rectal cancer therapy. |
format | Online Article Text |
id | pubmed-7848410 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Cognizant Communication Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-78484102021-02-16 Silencing Artemis Enhances Colorectal Cancer Cell Sensitivity to DNA-Damaging Agents Liu, Hai Wang, Xuanxuan Huang, Aihua Gao, Huaping Sun, Yikan Jiang, Tingting Shi, Liming Wu, Xianjie Dong, Qinghua Sun, Xiaonan Oncol Res Article Artemis is a key protein of NHEJ (nonhomologous end joining), which is the major pathway for the repair of IR-induced DSBs in mammalian cells. However, the expression of Artemis in tumors and the influence of silencing Artemis on tumor sensitivity to radiation have not been investigated fully. In this study, we investigated how the expression levels of Artemis may affect the treatment outcome of radiotherapy and chemotherapy in colorectal cancer cells. First, we found that the expression of Artemis is strong in some human rectal cancer samples, being higher than in adjacent normal tissues using immunohistochemical staining. We then knocked down Artemis gene in a human colorectal cancer cell line (RKO) using lentivirus-mediated siRNAs. Compared to the control RKO cells, the Artemis knockdown cells showed significantly increased sensitivity to bleomycin, etoposide, camptothecin, and IR. Induced by DNA-damaging agents, delayed DNA repair kinetics was found by the γ-H2AX foci assay, and a significantly increased cell apoptosis occurred in the Artemis knockdown RKO cells through apoptosis detection methods and Western blot. We also found that the p53/p21 signaling pathway may be involved in the apoptosis process. Taken together, our study indicates that manipulating Artemis can enhance colorectal cancer cell sensitivity to DNA-damaging agents. Therefore, Artemis can serve as a therapeutic target in rectal cancer therapy. Cognizant Communication Corporation 2018-12-27 /pmc/articles/PMC7848410/ /pubmed/29426373 http://dx.doi.org/10.3727/096504018X15179694020751 Text en Copyright © 2019 Cognizant, LLC. http://creativecommons.org/licenses/by-nc-nd/4.0/ This article is licensed under a Creative Commons Attribution-NonCommercial NoDerivatives 4.0 International License. |
spellingShingle | Article Liu, Hai Wang, Xuanxuan Huang, Aihua Gao, Huaping Sun, Yikan Jiang, Tingting Shi, Liming Wu, Xianjie Dong, Qinghua Sun, Xiaonan Silencing Artemis Enhances Colorectal Cancer Cell Sensitivity to DNA-Damaging Agents |
title | Silencing Artemis Enhances Colorectal Cancer Cell Sensitivity to DNA-Damaging Agents |
title_full | Silencing Artemis Enhances Colorectal Cancer Cell Sensitivity to DNA-Damaging Agents |
title_fullStr | Silencing Artemis Enhances Colorectal Cancer Cell Sensitivity to DNA-Damaging Agents |
title_full_unstemmed | Silencing Artemis Enhances Colorectal Cancer Cell Sensitivity to DNA-Damaging Agents |
title_short | Silencing Artemis Enhances Colorectal Cancer Cell Sensitivity to DNA-Damaging Agents |
title_sort | silencing artemis enhances colorectal cancer cell sensitivity to dna-damaging agents |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7848410/ https://www.ncbi.nlm.nih.gov/pubmed/29426373 http://dx.doi.org/10.3727/096504018X15179694020751 |
work_keys_str_mv | AT liuhai silencingartemisenhancescolorectalcancercellsensitivitytodnadamagingagents AT wangxuanxuan silencingartemisenhancescolorectalcancercellsensitivitytodnadamagingagents AT huangaihua silencingartemisenhancescolorectalcancercellsensitivitytodnadamagingagents AT gaohuaping silencingartemisenhancescolorectalcancercellsensitivitytodnadamagingagents AT sunyikan silencingartemisenhancescolorectalcancercellsensitivitytodnadamagingagents AT jiangtingting silencingartemisenhancescolorectalcancercellsensitivitytodnadamagingagents AT shiliming silencingartemisenhancescolorectalcancercellsensitivitytodnadamagingagents AT wuxianjie silencingartemisenhancescolorectalcancercellsensitivitytodnadamagingagents AT dongqinghua silencingartemisenhancescolorectalcancercellsensitivitytodnadamagingagents AT sunxiaonan silencingartemisenhancescolorectalcancercellsensitivitytodnadamagingagents |