Cargando…

The evolutionary conserved iron-sulfur protein TCR controls P700 oxidation in photosystem I

In natural habitats, plants have developed sophisticated regulatory mechanisms to optimize the photosynthetic electron transfer rate at the maximum efficiency and cope with the changing environments. Maintaining proper P700 oxidation at photosystem I (PSI) is the common denominator for most regulato...

Descripción completa

Detalles Bibliográficos
Autores principales: Luu Trinh, Mai Duy, Miyazaki, Daichi, Ono, Sumire, Nomata, Jiro, Kono, Masaru, Mino, Hiroyuki, Niwa, Tatsuya, Okegawa, Yuki, Motohashi, Ken, Taguchi, Hideki, Hisabori, Toru, Masuda, Shinji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7848650/
https://www.ncbi.nlm.nih.gov/pubmed/33554065
http://dx.doi.org/10.1016/j.isci.2021.102059
_version_ 1783645179269349376
author Luu Trinh, Mai Duy
Miyazaki, Daichi
Ono, Sumire
Nomata, Jiro
Kono, Masaru
Mino, Hiroyuki
Niwa, Tatsuya
Okegawa, Yuki
Motohashi, Ken
Taguchi, Hideki
Hisabori, Toru
Masuda, Shinji
author_facet Luu Trinh, Mai Duy
Miyazaki, Daichi
Ono, Sumire
Nomata, Jiro
Kono, Masaru
Mino, Hiroyuki
Niwa, Tatsuya
Okegawa, Yuki
Motohashi, Ken
Taguchi, Hideki
Hisabori, Toru
Masuda, Shinji
author_sort Luu Trinh, Mai Duy
collection PubMed
description In natural habitats, plants have developed sophisticated regulatory mechanisms to optimize the photosynthetic electron transfer rate at the maximum efficiency and cope with the changing environments. Maintaining proper P700 oxidation at photosystem I (PSI) is the common denominator for most regulatory processes of photosynthetic electron transfers. However, the molecular complexes and cofactors involved in these processes and their function(s) have not been fully clarified. Here, we identified a redox-active chloroplast protein, the triplet-cysteine repeat protein (TCR). TCR shared similar expression profiles with known photosynthetic regulators and contained two triplet-cysteine motifs (CxxxCxxxC). Biochemical analysis indicated that TCR localizes in chloroplasts and has a [3Fe-4S] cluster. Loss of TCR limited the electron sink downstream of PSI during dark-to-light transition. Arabidopsis pgr5-tcr double mutant reduced growth significantly and showed unusual oxidation and reduction of plastoquinone pool. These results indicated that TCR is involved in electron flow(s) downstream of PSI, contributing to P700 oxidation.
format Online
Article
Text
id pubmed-7848650
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-78486502021-02-04 The evolutionary conserved iron-sulfur protein TCR controls P700 oxidation in photosystem I Luu Trinh, Mai Duy Miyazaki, Daichi Ono, Sumire Nomata, Jiro Kono, Masaru Mino, Hiroyuki Niwa, Tatsuya Okegawa, Yuki Motohashi, Ken Taguchi, Hideki Hisabori, Toru Masuda, Shinji iScience Article In natural habitats, plants have developed sophisticated regulatory mechanisms to optimize the photosynthetic electron transfer rate at the maximum efficiency and cope with the changing environments. Maintaining proper P700 oxidation at photosystem I (PSI) is the common denominator for most regulatory processes of photosynthetic electron transfers. However, the molecular complexes and cofactors involved in these processes and their function(s) have not been fully clarified. Here, we identified a redox-active chloroplast protein, the triplet-cysteine repeat protein (TCR). TCR shared similar expression profiles with known photosynthetic regulators and contained two triplet-cysteine motifs (CxxxCxxxC). Biochemical analysis indicated that TCR localizes in chloroplasts and has a [3Fe-4S] cluster. Loss of TCR limited the electron sink downstream of PSI during dark-to-light transition. Arabidopsis pgr5-tcr double mutant reduced growth significantly and showed unusual oxidation and reduction of plastoquinone pool. These results indicated that TCR is involved in electron flow(s) downstream of PSI, contributing to P700 oxidation. Elsevier 2021-01-13 /pmc/articles/PMC7848650/ /pubmed/33554065 http://dx.doi.org/10.1016/j.isci.2021.102059 Text en © 2021 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Luu Trinh, Mai Duy
Miyazaki, Daichi
Ono, Sumire
Nomata, Jiro
Kono, Masaru
Mino, Hiroyuki
Niwa, Tatsuya
Okegawa, Yuki
Motohashi, Ken
Taguchi, Hideki
Hisabori, Toru
Masuda, Shinji
The evolutionary conserved iron-sulfur protein TCR controls P700 oxidation in photosystem I
title The evolutionary conserved iron-sulfur protein TCR controls P700 oxidation in photosystem I
title_full The evolutionary conserved iron-sulfur protein TCR controls P700 oxidation in photosystem I
title_fullStr The evolutionary conserved iron-sulfur protein TCR controls P700 oxidation in photosystem I
title_full_unstemmed The evolutionary conserved iron-sulfur protein TCR controls P700 oxidation in photosystem I
title_short The evolutionary conserved iron-sulfur protein TCR controls P700 oxidation in photosystem I
title_sort evolutionary conserved iron-sulfur protein tcr controls p700 oxidation in photosystem i
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7848650/
https://www.ncbi.nlm.nih.gov/pubmed/33554065
http://dx.doi.org/10.1016/j.isci.2021.102059
work_keys_str_mv AT luutrinhmaiduy theevolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi
AT miyazakidaichi theevolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi
AT onosumire theevolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi
AT nomatajiro theevolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi
AT konomasaru theevolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi
AT minohiroyuki theevolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi
AT niwatatsuya theevolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi
AT okegawayuki theevolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi
AT motohashiken theevolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi
AT taguchihideki theevolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi
AT hisaboritoru theevolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi
AT masudashinji theevolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi
AT luutrinhmaiduy evolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi
AT miyazakidaichi evolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi
AT onosumire evolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi
AT nomatajiro evolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi
AT konomasaru evolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi
AT minohiroyuki evolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi
AT niwatatsuya evolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi
AT okegawayuki evolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi
AT motohashiken evolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi
AT taguchihideki evolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi
AT hisaboritoru evolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi
AT masudashinji evolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi