Cargando…
The evolutionary conserved iron-sulfur protein TCR controls P700 oxidation in photosystem I
In natural habitats, plants have developed sophisticated regulatory mechanisms to optimize the photosynthetic electron transfer rate at the maximum efficiency and cope with the changing environments. Maintaining proper P700 oxidation at photosystem I (PSI) is the common denominator for most regulato...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7848650/ https://www.ncbi.nlm.nih.gov/pubmed/33554065 http://dx.doi.org/10.1016/j.isci.2021.102059 |
_version_ | 1783645179269349376 |
---|---|
author | Luu Trinh, Mai Duy Miyazaki, Daichi Ono, Sumire Nomata, Jiro Kono, Masaru Mino, Hiroyuki Niwa, Tatsuya Okegawa, Yuki Motohashi, Ken Taguchi, Hideki Hisabori, Toru Masuda, Shinji |
author_facet | Luu Trinh, Mai Duy Miyazaki, Daichi Ono, Sumire Nomata, Jiro Kono, Masaru Mino, Hiroyuki Niwa, Tatsuya Okegawa, Yuki Motohashi, Ken Taguchi, Hideki Hisabori, Toru Masuda, Shinji |
author_sort | Luu Trinh, Mai Duy |
collection | PubMed |
description | In natural habitats, plants have developed sophisticated regulatory mechanisms to optimize the photosynthetic electron transfer rate at the maximum efficiency and cope with the changing environments. Maintaining proper P700 oxidation at photosystem I (PSI) is the common denominator for most regulatory processes of photosynthetic electron transfers. However, the molecular complexes and cofactors involved in these processes and their function(s) have not been fully clarified. Here, we identified a redox-active chloroplast protein, the triplet-cysteine repeat protein (TCR). TCR shared similar expression profiles with known photosynthetic regulators and contained two triplet-cysteine motifs (CxxxCxxxC). Biochemical analysis indicated that TCR localizes in chloroplasts and has a [3Fe-4S] cluster. Loss of TCR limited the electron sink downstream of PSI during dark-to-light transition. Arabidopsis pgr5-tcr double mutant reduced growth significantly and showed unusual oxidation and reduction of plastoquinone pool. These results indicated that TCR is involved in electron flow(s) downstream of PSI, contributing to P700 oxidation. |
format | Online Article Text |
id | pubmed-7848650 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-78486502021-02-04 The evolutionary conserved iron-sulfur protein TCR controls P700 oxidation in photosystem I Luu Trinh, Mai Duy Miyazaki, Daichi Ono, Sumire Nomata, Jiro Kono, Masaru Mino, Hiroyuki Niwa, Tatsuya Okegawa, Yuki Motohashi, Ken Taguchi, Hideki Hisabori, Toru Masuda, Shinji iScience Article In natural habitats, plants have developed sophisticated regulatory mechanisms to optimize the photosynthetic electron transfer rate at the maximum efficiency and cope with the changing environments. Maintaining proper P700 oxidation at photosystem I (PSI) is the common denominator for most regulatory processes of photosynthetic electron transfers. However, the molecular complexes and cofactors involved in these processes and their function(s) have not been fully clarified. Here, we identified a redox-active chloroplast protein, the triplet-cysteine repeat protein (TCR). TCR shared similar expression profiles with known photosynthetic regulators and contained two triplet-cysteine motifs (CxxxCxxxC). Biochemical analysis indicated that TCR localizes in chloroplasts and has a [3Fe-4S] cluster. Loss of TCR limited the electron sink downstream of PSI during dark-to-light transition. Arabidopsis pgr5-tcr double mutant reduced growth significantly and showed unusual oxidation and reduction of plastoquinone pool. These results indicated that TCR is involved in electron flow(s) downstream of PSI, contributing to P700 oxidation. Elsevier 2021-01-13 /pmc/articles/PMC7848650/ /pubmed/33554065 http://dx.doi.org/10.1016/j.isci.2021.102059 Text en © 2021 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Luu Trinh, Mai Duy Miyazaki, Daichi Ono, Sumire Nomata, Jiro Kono, Masaru Mino, Hiroyuki Niwa, Tatsuya Okegawa, Yuki Motohashi, Ken Taguchi, Hideki Hisabori, Toru Masuda, Shinji The evolutionary conserved iron-sulfur protein TCR controls P700 oxidation in photosystem I |
title | The evolutionary conserved iron-sulfur protein TCR controls P700 oxidation in photosystem I |
title_full | The evolutionary conserved iron-sulfur protein TCR controls P700 oxidation in photosystem I |
title_fullStr | The evolutionary conserved iron-sulfur protein TCR controls P700 oxidation in photosystem I |
title_full_unstemmed | The evolutionary conserved iron-sulfur protein TCR controls P700 oxidation in photosystem I |
title_short | The evolutionary conserved iron-sulfur protein TCR controls P700 oxidation in photosystem I |
title_sort | evolutionary conserved iron-sulfur protein tcr controls p700 oxidation in photosystem i |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7848650/ https://www.ncbi.nlm.nih.gov/pubmed/33554065 http://dx.doi.org/10.1016/j.isci.2021.102059 |
work_keys_str_mv | AT luutrinhmaiduy theevolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi AT miyazakidaichi theevolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi AT onosumire theevolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi AT nomatajiro theevolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi AT konomasaru theevolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi AT minohiroyuki theevolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi AT niwatatsuya theevolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi AT okegawayuki theevolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi AT motohashiken theevolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi AT taguchihideki theevolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi AT hisaboritoru theevolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi AT masudashinji theevolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi AT luutrinhmaiduy evolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi AT miyazakidaichi evolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi AT onosumire evolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi AT nomatajiro evolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi AT konomasaru evolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi AT minohiroyuki evolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi AT niwatatsuya evolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi AT okegawayuki evolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi AT motohashiken evolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi AT taguchihideki evolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi AT hisaboritoru evolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi AT masudashinji evolutionaryconservedironsulfurproteintcrcontrolsp700oxidationinphotosystemi |