Cargando…

Exactly solvable SIR models, their extensions and their application to sensitive pandemic forecasting

The classic SIR model of epidemic dynamics is solved completely by quadratures, including a time integral transform expanded in a series of incomplete gamma functions. The model is also generalized to arbitrary time-dependent infection rates and solved explicitly when the control parameter depends o...

Descripción completa

Detalles Bibliográficos
Autores principales: Sadurní, E., Luna-Acosta, G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7849229/
https://www.ncbi.nlm.nih.gov/pubmed/33551570
http://dx.doi.org/10.1007/s11071-021-06248-y
Descripción
Sumario:The classic SIR model of epidemic dynamics is solved completely by quadratures, including a time integral transform expanded in a series of incomplete gamma functions. The model is also generalized to arbitrary time-dependent infection rates and solved explicitly when the control parameter depends on the accumulated infections at time t. Numerical results are presented by way of comparison. Autonomous and non-autonomous generalizations of SIR for interacting regions are also considered, including non-separability for two or more interacting regions. A reduction of simple SIR models to one variable leads us to a generalized logistic model, Richards model, which we use to fit Mexico’s COVID-19 data up to day number 134. Forecasting scenarios resulting from various fittings are discussed. A critique to the applicability of these models to current pandemic outbreaks in terms of robustness is provided. Finally, we obtain the bifurcation diagram for a discretized version of Richards model, displaying period doubling bifurcation to chaos.