Cargando…
Exactly solvable SIR models, their extensions and their application to sensitive pandemic forecasting
The classic SIR model of epidemic dynamics is solved completely by quadratures, including a time integral transform expanded in a series of incomplete gamma functions. The model is also generalized to arbitrary time-dependent infection rates and solved explicitly when the control parameter depends o...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7849229/ https://www.ncbi.nlm.nih.gov/pubmed/33551570 http://dx.doi.org/10.1007/s11071-021-06248-y |
Sumario: | The classic SIR model of epidemic dynamics is solved completely by quadratures, including a time integral transform expanded in a series of incomplete gamma functions. The model is also generalized to arbitrary time-dependent infection rates and solved explicitly when the control parameter depends on the accumulated infections at time t. Numerical results are presented by way of comparison. Autonomous and non-autonomous generalizations of SIR for interacting regions are also considered, including non-separability for two or more interacting regions. A reduction of simple SIR models to one variable leads us to a generalized logistic model, Richards model, which we use to fit Mexico’s COVID-19 data up to day number 134. Forecasting scenarios resulting from various fittings are discussed. A critique to the applicability of these models to current pandemic outbreaks in terms of robustness is provided. Finally, we obtain the bifurcation diagram for a discretized version of Richards model, displaying period doubling bifurcation to chaos. |
---|