Cargando…
Precision shielding for COVID-19: metrics of assessment and feasibility of deployment
The ability to preferentially protect high-risk groups in COVID-19 is hotly debated. Here, the aim is to present simple metrics of such precision shielding of people at high risk of death after infection by SARS-CoV-2; demonstrate how they can estimated; and examine whether precision shielding was s...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7849322/ https://www.ncbi.nlm.nih.gov/pubmed/33514595 http://dx.doi.org/10.1136/bmjgh-2020-004614 |
_version_ | 1783645281210859520 |
---|---|
author | Ioannidis, John P A |
author_facet | Ioannidis, John P A |
author_sort | Ioannidis, John P A |
collection | PubMed |
description | The ability to preferentially protect high-risk groups in COVID-19 is hotly debated. Here, the aim is to present simple metrics of such precision shielding of people at high risk of death after infection by SARS-CoV-2; demonstrate how they can estimated; and examine whether precision shielding was successfully achieved in the first COVID-19 wave. The shielding ratio, S, is defined as the ratio of prevalence of infection among people in a high-risk group versus among people in a low-risk group. The contrasted risk groups examined here are according to age (≥70 vs <70 years), and institutionalised (nursing home) setting. For age-related precision shielding, data were used from large seroprevalence studies with separate prevalence data for elderly versus non-elderly and with at least 1000 assessed people≥70 years old. For setting-related precision shielding, data were analysed from 10 countries where information was available on numbers of nursing home residents, proportion of nursing home residents among COVID-19 deaths and overall population infection fatality rate (IFR). Across 17 seroprevalence studies, the shielding ratio S for elderly versus non-elderly varied between 0.4 (substantial shielding) and 1.6 (substantial inverse protection, that is, low-risk people being protected more than high-risk people). Five studies in the USA all yielded S=0.4–0.8, consistent with some shielding being achieved, while two studies in China yielded S=1.5–1.6, consistent with inverse protection. Assuming 25% IFR among nursing home residents, S values for nursing home residents ranged from 0.07 to 3.1. The best shielding was seen in South Korea (S=0.07) and modest shielding was achieved in Israel, Slovenia, Germany and Denmark. No shielding was achieved in Hungary and Sweden. In Belgium (S=1.9), the UK (S=2.2) and Spain (S=3.1), nursing home residents were far more frequently infected than the rest of the population. In conclusion, the experience from the first wave of COVID-19 suggests that different locations and settings varied markedly in the extent to which they protected high-risk groups. Both effective precision shielding and detrimental inverse protection can happen in real-life circumstances. COVID-19 interventions should seek to achieve maximal precision shielding. |
format | Online Article Text |
id | pubmed-7849322 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BMJ Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-78493222021-02-01 Precision shielding for COVID-19: metrics of assessment and feasibility of deployment Ioannidis, John P A BMJ Glob Health Practice The ability to preferentially protect high-risk groups in COVID-19 is hotly debated. Here, the aim is to present simple metrics of such precision shielding of people at high risk of death after infection by SARS-CoV-2; demonstrate how they can estimated; and examine whether precision shielding was successfully achieved in the first COVID-19 wave. The shielding ratio, S, is defined as the ratio of prevalence of infection among people in a high-risk group versus among people in a low-risk group. The contrasted risk groups examined here are according to age (≥70 vs <70 years), and institutionalised (nursing home) setting. For age-related precision shielding, data were used from large seroprevalence studies with separate prevalence data for elderly versus non-elderly and with at least 1000 assessed people≥70 years old. For setting-related precision shielding, data were analysed from 10 countries where information was available on numbers of nursing home residents, proportion of nursing home residents among COVID-19 deaths and overall population infection fatality rate (IFR). Across 17 seroprevalence studies, the shielding ratio S for elderly versus non-elderly varied between 0.4 (substantial shielding) and 1.6 (substantial inverse protection, that is, low-risk people being protected more than high-risk people). Five studies in the USA all yielded S=0.4–0.8, consistent with some shielding being achieved, while two studies in China yielded S=1.5–1.6, consistent with inverse protection. Assuming 25% IFR among nursing home residents, S values for nursing home residents ranged from 0.07 to 3.1. The best shielding was seen in South Korea (S=0.07) and modest shielding was achieved in Israel, Slovenia, Germany and Denmark. No shielding was achieved in Hungary and Sweden. In Belgium (S=1.9), the UK (S=2.2) and Spain (S=3.1), nursing home residents were far more frequently infected than the rest of the population. In conclusion, the experience from the first wave of COVID-19 suggests that different locations and settings varied markedly in the extent to which they protected high-risk groups. Both effective precision shielding and detrimental inverse protection can happen in real-life circumstances. COVID-19 interventions should seek to achieve maximal precision shielding. BMJ Publishing Group 2021-01-29 /pmc/articles/PMC7849322/ /pubmed/33514595 http://dx.doi.org/10.1136/bmjgh-2020-004614 Text en © Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. http://creativecommons.org/licenses/by-nc/4.0/ http://creativecommons.org/licenses/by-nc/4.0/This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/. |
spellingShingle | Practice Ioannidis, John P A Precision shielding for COVID-19: metrics of assessment and feasibility of deployment |
title | Precision shielding for COVID-19: metrics of assessment and feasibility of deployment |
title_full | Precision shielding for COVID-19: metrics of assessment and feasibility of deployment |
title_fullStr | Precision shielding for COVID-19: metrics of assessment and feasibility of deployment |
title_full_unstemmed | Precision shielding for COVID-19: metrics of assessment and feasibility of deployment |
title_short | Precision shielding for COVID-19: metrics of assessment and feasibility of deployment |
title_sort | precision shielding for covid-19: metrics of assessment and feasibility of deployment |
topic | Practice |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7849322/ https://www.ncbi.nlm.nih.gov/pubmed/33514595 http://dx.doi.org/10.1136/bmjgh-2020-004614 |
work_keys_str_mv | AT ioannidisjohnpa precisionshieldingforcovid19metricsofassessmentandfeasibilityofdeployment |