Cargando…
Using Artificial Intelligence to Obtain More Evidence? Prediction of Length of Hospitalization in Pediatric Burn Patients
Background: It is not only important for counseling purposes and for healthcare management. This study investigates the prediction accuracy of an artificial intelligence (AI)-based approach and a linear model. The heuristic expecting 1 day of stay per percentage of total body surface area (TBSA) ser...
Autores principales: | Elrod, Julia, Mohr, Christoph, Wolff, Ruben, Boettcher, Michael, Reinshagen, Konrad, Bartels, Pia, Koenigs, Ingo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7849450/ https://www.ncbi.nlm.nih.gov/pubmed/33537267 http://dx.doi.org/10.3389/fped.2020.613736 |
Ejemplares similares
-
Combination of Side-Swing Flap With Negative-Pressure Wound Therapy Is Superior to Open Excision or Flap Alone in Children With Pilonidal Sinus—But at What Cost?
por: Dorth, Deborah, et al.
Publicado: (2021) -
The Modified Heidelberg and the AI Appendicitis Score Are Superior to Current Scores in Predicting Appendicitis in Children: A Two-Center Cohort Study
por: Stiel, Carolin, et al.
Publicado: (2020) -
The BAL-Score Almost Perfectly Predicts Testicular Torsion in Children: A Two-Center Cohort Study
por: Klinke, Michaela, et al.
Publicado: (2020) -
Murine scald models characterize the role of neutrophils and neutrophil extracellular traps in severe burns
por: Elrod, Julia, et al.
Publicado: (2023) -
High prevalence of multidrug-resistant Gram-negative bacteria carriage in children screened prospectively for multidrug resistant organisms at admission to a paediatric hospital, Hamburg, Germany, September 2018 to May 2019
por: Najem, Safiullah, et al.
Publicado: (2022)