Cargando…

Alternative activation of human macrophages enhances tissue factor expression and production of extracellular vesicles

Macrophages are versatile cells that can be polarized by the tissue environment to fulfill required needs. Proinflammatory polarization is associated with increased tissue degradation and propagation of inflammation whereas alternative polarization within a Th2 cytokine environment is associated wit...

Descripción completa

Detalles Bibliográficos
Autores principales: Hohensinner, Philipp J., Mayer, Julia, Kirchbacher, Julia, Kral-Pointner, Julia, Thaler, Barbara, Kaun, Christoph, Hell, Lena, Haider, Patrick, Mussbacher, Marion, Schmid, Johannes A., Stojkovic, Stefan, Demyanets, Svitlana, Fischer, Michael B., Huber, Kurt, Woran, Katharina, Hengstenberg, Christian, Speidl, Walter S., Oehler, Rudolf, Pabinger, Ingrid, Wojta, Johann
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Fondazione Ferrata Storti 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7849567/
https://www.ncbi.nlm.nih.gov/pubmed/31974204
http://dx.doi.org/10.3324/haematol.2019.220210
Descripción
Sumario:Macrophages are versatile cells that can be polarized by the tissue environment to fulfill required needs. Proinflammatory polarization is associated with increased tissue degradation and propagation of inflammation whereas alternative polarization within a Th2 cytokine environment is associated with wound healing and angiogenesis. To understand whether polarization of macrophages can lead to a procoagulant macrophage subset we polarized human monocyte-derived macrophages to proinflammatory and alternative activation states. Alternative polarization with interleukin-4 and interleukin-13 led to a macrophage phenotype characterized by increased tissue factor (TF) production and release and by an increase in extracellular vesicle production. In addition, TF activity was enhanced in extracellular vesicles of alternatively polarized macrophages. This TF induction was dependent on signal transducer and activator of transcription- 6 signaling and poly ADP ribose polymerase activity. In contrast to monocytes, human macrophages did not show increased TF expression upon stimulation with lipopolysaccharide and interferon-γ. Previous polarization to either a proinflammatory or an alternative activation subset did not change the subsequent stimulation of TF. The inability of proinflammatory activated macrophages to respond to lipopolysaccharide and interferon- γ with an increase in TF production seemed to be due to an increase in TF promoter methylation and was reversible when these macrophages were treated with a demethylating agent. In conclusion, we provide evidence that proinflammatory polarization of macrophages does not lead to enhanced procoagulatory function, whereas alternative polarization of macrophages leads to an increased expression of TF and increased production of TF-bearing extracellular vesicles by these cells suggesting a procoagulatory phenotype of alternatively polarized macrophages.