Cargando…
AmpliCI: a high-resolution model-based approach for denoising Illumina amplicon data
MOTIVATION: Next-generation amplicon sequencing is a powerful tool for investigating microbial communities. A main challenge is to distinguish true biological variants from errors caused by amplification and sequencing. In traditional analyses, such errors are eliminated by clustering reads within a...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7850112/ https://www.ncbi.nlm.nih.gov/pubmed/32697845 http://dx.doi.org/10.1093/bioinformatics/btaa648 |
Sumario: | MOTIVATION: Next-generation amplicon sequencing is a powerful tool for investigating microbial communities. A main challenge is to distinguish true biological variants from errors caused by amplification and sequencing. In traditional analyses, such errors are eliminated by clustering reads within a sequence similarity threshold, usually 97%, and constructing operational taxonomic units, but the arbitrary threshold leads to low resolution and high false-positive rates. Recently developed ‘denoising’ methods have proven able to resolve single-nucleotide amplicon variants, but they still miss low-frequency sequences, especially those near more frequent sequences, because they ignore the sequencing quality information. RESULTS: We introduce AmpliCI, a reference-free, model-based method for rapidly resolving the number, abundance and identity of error-free sequences in massive Illumina amplicon datasets. AmpliCI considers the quality information and allows the data, not an arbitrary threshold or an external database, to drive conclusions. AmpliCI estimates a finite mixture model, using a greedy strategy to gradually select error-free sequences and approximately maximize the likelihood. AmpliCI has better performance than three popular denoising methods, with acceptable computation time and memory usage. AVAILABILITY AND IMPLEMENTATION: Source code is available at https://github.com/DormanLab/AmpliCI. SUPPLEMENTARY INFORMATION: Supplementary material are available at Bioinformatics online. |
---|