Cargando…
Deep Learning Models for Predicting Severe Progression in COVID-19-Infected Patients: Retrospective Study
BACKGROUND: Many COVID-19 patients rapidly progress to respiratory failure with a broad range of severities. Identification of high-risk cases is critical for early intervention. OBJECTIVE: The aim of this study is to develop deep learning models that can rapidly identify high-risk COVID-19 patients...
Autores principales: | Ho, Thao Thi, Park, Jongmin, Kim, Taewoo, Park, Byunggeon, Lee, Jaehee, Kim, Jin Young, Kim, Ki Beom, Choi, Sooyoung, Kim, Young Hwan, Lim, Jae-Kwang, Choi, Sanghun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7850779/ https://www.ncbi.nlm.nih.gov/pubmed/33455900 http://dx.doi.org/10.2196/24973 |
Ejemplares similares
-
Prognostic Implication of Volumetric Quantitative CT Analysis in Patients with COVID-19: A Multicenter Study in Daegu, Korea
por: Park, Byunggeon, et al.
Publicado: (2020) -
Impact of Computed Tomography-Quantified Emphysema Score on Clinical Outcome in Patients with COVID-19
por: Lim, Jae-Kwang, et al.
Publicado: (2021) -
Deep-learning algorithms for the interpretation of chest radiographs to aid in the triage of COVID-19 patients: A multicenter retrospective study
por: Jang, Se Bum, et al.
Publicado: (2020) -
Deep Learning Techniques for Fatty Liver Using Multi-View Ultrasound Images Scanned by Different Scanners: Development and Validation Study
por: Kim, Taewoo, et al.
Publicado: (2021) -
Peritumoral imaging features of thymic epithelial tumors for the prediction of transcapsular invasion: beyond intratumoral analysis
por: Park, Jongmin, et al.
Publicado: (2023)