Cargando…
Transcriptome sequencing revealed the inhibitory mechanism of ketoconazole on clinical Microsporum canis
BACKGROUND: Microsporum canis is a zoonotic disease that can cause dermatophytosis in animals and humans. OBJECTIVES: In clinical practice, ketoconazole (KTZ) and other imidazole drugs are commonly used to treat M. canis infection, but its molecular mechanism is not completely understood. The antifu...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Society of Veterinary Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7850795/ https://www.ncbi.nlm.nih.gov/pubmed/33522156 http://dx.doi.org/10.4142/jvs.2021.22.e4 |
_version_ | 1783645514184523776 |
---|---|
author | Wang, Mingyang Zhao, Yan Cao, Lingfang Luo, Silong Ni, Binyan Zhang, Yi Chen, Zeliang |
author_facet | Wang, Mingyang Zhao, Yan Cao, Lingfang Luo, Silong Ni, Binyan Zhang, Yi Chen, Zeliang |
author_sort | Wang, Mingyang |
collection | PubMed |
description | BACKGROUND: Microsporum canis is a zoonotic disease that can cause dermatophytosis in animals and humans. OBJECTIVES: In clinical practice, ketoconazole (KTZ) and other imidazole drugs are commonly used to treat M. canis infection, but its molecular mechanism is not completely understood. The antifungal mechanism of KTZ needs to be studied in detail. METHODS: In this study, one strain of fungi was isolated from a canine suffering with clinical dermatosis and confirmed as M. canis by morphological observation and sequencing analysis. The clinically isolated M. canis was treated with KTZ and transcriptome sequencing was performed to identify differentially expressed genes in M. canis exposed to KTZ compared with those unexposed thereto. RESULTS: At half-inhibitory concentration (½MIC), compared with the control group, 453 genes were significantly up-regulated and 326 genes were significantly down-regulated (p < 0.05). Quantitative reverse transcription polymerase chain reaction analysis verified the transcriptome results of RNA sequencing. Gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that the 3 pathways of RNA polymerase, steroid biosynthesis, and ribosome biogenesis in eukaryotes are closely related to the antifungal mechanism of KTZ. CONCLUSIONS: The results indicated that KTZ may change cell membrane permeability, destroy the cell wall, and inhibit mitosis and transcriptional regulation through CYP51, SQL, ERG6, ATM, ABCB1, SC, KER33, RPA1, and RNP genes in the 3 pathways. This study provides a new theoretical basis for the effective control of M. canis infection and the effect of KTZ on fungi. |
format | Online Article Text |
id | pubmed-7850795 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Korean Society of Veterinary Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-78507952021-02-08 Transcriptome sequencing revealed the inhibitory mechanism of ketoconazole on clinical Microsporum canis Wang, Mingyang Zhao, Yan Cao, Lingfang Luo, Silong Ni, Binyan Zhang, Yi Chen, Zeliang J Vet Sci Original Article BACKGROUND: Microsporum canis is a zoonotic disease that can cause dermatophytosis in animals and humans. OBJECTIVES: In clinical practice, ketoconazole (KTZ) and other imidazole drugs are commonly used to treat M. canis infection, but its molecular mechanism is not completely understood. The antifungal mechanism of KTZ needs to be studied in detail. METHODS: In this study, one strain of fungi was isolated from a canine suffering with clinical dermatosis and confirmed as M. canis by morphological observation and sequencing analysis. The clinically isolated M. canis was treated with KTZ and transcriptome sequencing was performed to identify differentially expressed genes in M. canis exposed to KTZ compared with those unexposed thereto. RESULTS: At half-inhibitory concentration (½MIC), compared with the control group, 453 genes were significantly up-regulated and 326 genes were significantly down-regulated (p < 0.05). Quantitative reverse transcription polymerase chain reaction analysis verified the transcriptome results of RNA sequencing. Gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that the 3 pathways of RNA polymerase, steroid biosynthesis, and ribosome biogenesis in eukaryotes are closely related to the antifungal mechanism of KTZ. CONCLUSIONS: The results indicated that KTZ may change cell membrane permeability, destroy the cell wall, and inhibit mitosis and transcriptional regulation through CYP51, SQL, ERG6, ATM, ABCB1, SC, KER33, RPA1, and RNP genes in the 3 pathways. This study provides a new theoretical basis for the effective control of M. canis infection and the effect of KTZ on fungi. The Korean Society of Veterinary Science 2021-01 2020-12-09 /pmc/articles/PMC7850795/ /pubmed/33522156 http://dx.doi.org/10.4142/jvs.2021.22.e4 Text en © 2021 The Korean Society of Veterinary Science https://creativecommons.org/licenses/by-nc/4.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Wang, Mingyang Zhao, Yan Cao, Lingfang Luo, Silong Ni, Binyan Zhang, Yi Chen, Zeliang Transcriptome sequencing revealed the inhibitory mechanism of ketoconazole on clinical Microsporum canis |
title | Transcriptome sequencing revealed the inhibitory mechanism of ketoconazole on clinical Microsporum canis
|
title_full | Transcriptome sequencing revealed the inhibitory mechanism of ketoconazole on clinical Microsporum canis
|
title_fullStr | Transcriptome sequencing revealed the inhibitory mechanism of ketoconazole on clinical Microsporum canis
|
title_full_unstemmed | Transcriptome sequencing revealed the inhibitory mechanism of ketoconazole on clinical Microsporum canis
|
title_short | Transcriptome sequencing revealed the inhibitory mechanism of ketoconazole on clinical Microsporum canis
|
title_sort | transcriptome sequencing revealed the inhibitory mechanism of ketoconazole on clinical microsporum canis |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7850795/ https://www.ncbi.nlm.nih.gov/pubmed/33522156 http://dx.doi.org/10.4142/jvs.2021.22.e4 |
work_keys_str_mv | AT wangmingyang transcriptomesequencingrevealedtheinhibitorymechanismofketoconazoleonclinicalmicrosporumcanis AT zhaoyan transcriptomesequencingrevealedtheinhibitorymechanismofketoconazoleonclinicalmicrosporumcanis AT caolingfang transcriptomesequencingrevealedtheinhibitorymechanismofketoconazoleonclinicalmicrosporumcanis AT luosilong transcriptomesequencingrevealedtheinhibitorymechanismofketoconazoleonclinicalmicrosporumcanis AT nibinyan transcriptomesequencingrevealedtheinhibitorymechanismofketoconazoleonclinicalmicrosporumcanis AT zhangyi transcriptomesequencingrevealedtheinhibitorymechanismofketoconazoleonclinicalmicrosporumcanis AT chenzeliang transcriptomesequencingrevealedtheinhibitorymechanismofketoconazoleonclinicalmicrosporumcanis |