Cargando…
A Privacy-Preserving Log-Rank Test for the Kaplan-Meier Estimator With Secure Multiparty Computation: Algorithm Development and Validation
BACKGROUND: Patient data is considered particularly sensitive personal data. Privacy regulations strictly govern the use of patient data and restrict their exchange. However, medical research can benefit from multicentric studies in which patient data from different institutions are pooled and evalu...
Autores principales: | von Maltitz, Marcel, Ballhausen, Hendrik, Kaul, David, Fleischmann, Daniel F, Niyazi, Maximilian, Belka, Claus, Carle, Georg |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7850908/ https://www.ncbi.nlm.nih.gov/pubmed/33459602 http://dx.doi.org/10.2196/22158 |
Ejemplares similares
-
Understanding survival analysis: Kaplan-Meier estimate
por: Goel, Manish Kumar, et al.
Publicado: (2010) -
An Introduction to Survival Statistics: Kaplan-Meier Analysis
por: Dudley,1, William N., et al.
Publicado: (2016) -
Improved Kaplan-Meier Estimator in Survival Analysis Based on Partially Rank-Ordered Set Samples
por: Nematolahi, Samane, et al.
Publicado: (2020) -
Privacy-preserving record linkage in large databases using secure multiparty computation
por: Laud, Peeter, et al.
Publicado: (2018) -
Comments on the utilization of Mann-Whitney U test and Kaplan-Meier method
por: Xie, Jian, et al.
Publicado: (2021)