Cargando…
Künstliche Intelligenz in der Mammadiagnostik: Anwendungsgebiete aus klinischer Perspektive
CLINICAL/METHODOLOGICAL ISSUE: Central to breast imaging is the coordination of clinical and multimodal imaging information with percutaneous image-guided biopsies and surgical procedures. A wide range of problems arise due to this complexity: missed cancers, overdiagnosis, false-positive findings,...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Medizin
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7851036/ https://www.ncbi.nlm.nih.gov/pubmed/33507318 http://dx.doi.org/10.1007/s00117-020-00802-2 |
_version_ | 1783645560353325056 |
---|---|
author | Baltzer, Pascal A. T. |
author_facet | Baltzer, Pascal A. T. |
author_sort | Baltzer, Pascal A. T. |
collection | PubMed |
description | CLINICAL/METHODOLOGICAL ISSUE: Central to breast imaging is the coordination of clinical and multimodal imaging information with percutaneous image-guided biopsies and surgical procedures. A wide range of problems arise due to this complexity: missed cancers, overdiagnosis, false-positive findings, unnecessary further imaging, biopsies and surgeries. STANDARD RADIOLOGICAL METHODS: Breast imaging comprises the following diagnostic tests: mammography, tomosynthesis, contrast-enhanced mammography, (multiparametric) ultrasound, magnetic resonance imaging, computed tomography, nuclear medicine derived imaging and hybrid methods. METHODOLOGICAL INNOVATIONS: Artificial intelligence (AI) promises to alleviate practically all these problems of breast imaging. AI has the potential to avoid missed cancers and false-positive findings. Furthermore, it could guide an efficient use of imaging methods and it may potentially be used to define biological phenotypes of breast cancer. PERFORMANCE: AI-based software is being developed for various applications. Most developed are systems that support mammography screening. Problems are monocentric approaches and the focus on short-term financial success. ACHIEVEMENTS: AI promises to improve breast imaging by simplifying and speeding up the workflow, by reducing monotonous tasks and by pointing out problems. This is likely to set free physician capacities that could be invested in improved communication with patients and interdisciplinary colleagues. PRACTICAL RECOMMENDATIONS: The present article mainly addresses clinical needs in breast imaging, pointing out potential areas of use for artificial intelligence. Depending on the definition, a wide array of helpful software tools for breast imaging are already available. Global solutions, however, are still missing. |
format | Online Article Text |
id | pubmed-7851036 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Springer Medizin |
record_format | MEDLINE/PubMed |
spelling | pubmed-78510362021-02-08 Künstliche Intelligenz in der Mammadiagnostik: Anwendungsgebiete aus klinischer Perspektive Baltzer, Pascal A. T. Radiologe Leitthema CLINICAL/METHODOLOGICAL ISSUE: Central to breast imaging is the coordination of clinical and multimodal imaging information with percutaneous image-guided biopsies and surgical procedures. A wide range of problems arise due to this complexity: missed cancers, overdiagnosis, false-positive findings, unnecessary further imaging, biopsies and surgeries. STANDARD RADIOLOGICAL METHODS: Breast imaging comprises the following diagnostic tests: mammography, tomosynthesis, contrast-enhanced mammography, (multiparametric) ultrasound, magnetic resonance imaging, computed tomography, nuclear medicine derived imaging and hybrid methods. METHODOLOGICAL INNOVATIONS: Artificial intelligence (AI) promises to alleviate practically all these problems of breast imaging. AI has the potential to avoid missed cancers and false-positive findings. Furthermore, it could guide an efficient use of imaging methods and it may potentially be used to define biological phenotypes of breast cancer. PERFORMANCE: AI-based software is being developed for various applications. Most developed are systems that support mammography screening. Problems are monocentric approaches and the focus on short-term financial success. ACHIEVEMENTS: AI promises to improve breast imaging by simplifying and speeding up the workflow, by reducing monotonous tasks and by pointing out problems. This is likely to set free physician capacities that could be invested in improved communication with patients and interdisciplinary colleagues. PRACTICAL RECOMMENDATIONS: The present article mainly addresses clinical needs in breast imaging, pointing out potential areas of use for artificial intelligence. Depending on the definition, a wide array of helpful software tools for breast imaging are already available. Global solutions, however, are still missing. Springer Medizin 2021-01-28 2021 /pmc/articles/PMC7851036/ /pubmed/33507318 http://dx.doi.org/10.1007/s00117-020-00802-2 Text en © The Author(s) 2021 Open Access Dieser Artikel wird unter der Creative Commons Namensnennung 4.0 International Lizenz veröffentlicht, welche die Nutzung, Vervielfältigung, Bearbeitung, Verbreitung und Wiedergabe in jeglichem Medium und Format erlaubt, sofern Sie den/die ursprünglichen Autor(en) und die Quelle ordnungsgemäß nennen, einen Link zur Creative Commons Lizenz beifügen und angeben, ob Änderungen vorgenommen wurden. Die in diesem Artikel enthaltenen Bilder und sonstiges Drittmaterial unterliegen ebenfalls der genannten Creative Commons Lizenz, sofern sich aus der Abbildungslegende nichts anderes ergibt. Sofern das betreffende Material nicht unter der genannten Creative Commons Lizenz steht und die betreffende Handlung nicht nach gesetzlichen Vorschriften erlaubt ist, ist für die oben aufgeführten Weiterverwendungen des Materials die Einwilligung des jeweiligen Rechteinhabers einzuholen. Weitere Details zur Lizenz entnehmen Sie bitte der Lizenzinformation auf http://creativecommons.org/licenses/by/4.0/deed.de. |
spellingShingle | Leitthema Baltzer, Pascal A. T. Künstliche Intelligenz in der Mammadiagnostik: Anwendungsgebiete aus klinischer Perspektive |
title | Künstliche Intelligenz in der Mammadiagnostik: Anwendungsgebiete aus klinischer Perspektive |
title_full | Künstliche Intelligenz in der Mammadiagnostik: Anwendungsgebiete aus klinischer Perspektive |
title_fullStr | Künstliche Intelligenz in der Mammadiagnostik: Anwendungsgebiete aus klinischer Perspektive |
title_full_unstemmed | Künstliche Intelligenz in der Mammadiagnostik: Anwendungsgebiete aus klinischer Perspektive |
title_short | Künstliche Intelligenz in der Mammadiagnostik: Anwendungsgebiete aus klinischer Perspektive |
title_sort | künstliche intelligenz in der mammadiagnostik: anwendungsgebiete aus klinischer perspektive |
topic | Leitthema |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7851036/ https://www.ncbi.nlm.nih.gov/pubmed/33507318 http://dx.doi.org/10.1007/s00117-020-00802-2 |
work_keys_str_mv | AT baltzerpascalat kunstlicheintelligenzindermammadiagnostikanwendungsgebieteausklinischerperspektive |