Cargando…
Context-dependent extinction learning emerging from raw sensory inputs: a reinforcement learning approach
The context-dependence of extinction learning has been well studied and requires the hippocampus. However, the underlying neural mechanisms are still poorly understood. Using memory-driven reinforcement learning and deep neural networks, we developed a model that learns to navigate autonomously in b...
Autores principales: | Walther, Thomas, Diekmann, Nicolas, Vijayabaskaran, Sandhiya, Donoso, José R., Manahan-Vaughan, Denise, Wiskott, Laurenz, Cheng, Sen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7851139/ https://www.ncbi.nlm.nih.gov/pubmed/33526840 http://dx.doi.org/10.1038/s41598-021-81157-z |
Ejemplares similares
-
Reinforcement Learning on Slow Features of High-Dimensional Input Streams
por: Legenstein, Robert, et al.
Publicado: (2010) -
Functional Compartmentalization of the Contribution of Hippocampal Subfields to Context-Dependent Extinction Learning
por: Méndez-Couz, Marta, et al.
Publicado: (2019) -
CoBeL-RL: A neuroscience-oriented simulation framework for complex behavior and learning
por: Diekmann, Nicolas, et al.
Publicado: (2023) -
Modeling the function of episodic memory in spatial learning
por: Zeng, Xiangshuai, et al.
Publicado: (2023) -
Beta-adrenergic receptors support attention to extinction learning that occurs in the absence, but not the presence, of a context change
por: André, Marion Agnès Emma, et al.
Publicado: (2015)