Cargando…
Adaptive hyperparameter updating for training restricted Boltzmann machines on quantum annealers
Restricted Boltzmann Machines (RBMs) have been proposed for developing neural networks for a variety of unsupervised machine learning applications such as image recognition, drug discovery, and materials design. The Boltzmann probability distribution is used as a model to identify network parameters...
Autores principales: | Xu, Guanglei, Oates, William S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7851404/ https://www.ncbi.nlm.nih.gov/pubmed/33526868 http://dx.doi.org/10.1038/s41598-021-82197-1 |
Ejemplares similares
-
Generative and discriminative training of Boltzmann machine through quantum annealing
por: Srivastava, Siddhartha, et al.
Publicado: (2023) -
Dynamic Topology Reconfiguration of Boltzmann Machines on Quantum Annealers
por: Liu, Jeremy, et al.
Publicado: (2020) -
Temperature based Restricted Boltzmann Machines
por: Li, Guoqi, et al.
Publicado: (2016) -
A quantum-inspired probabilistic prime factorization based on virtually connected Boltzmann machine and probabilistic annealing
por: Jung, Hyundo, et al.
Publicado: (2023) -
Privacy-Preserving Restricted Boltzmann Machine
por: Li, Yu, et al.
Publicado: (2014)