Cargando…

Comparison of regional brain deficit patterns in common psychiatric and neurological disorders as revealed by big data

Neurological and psychiatric illnesses are associated with regional brain deficit patterns that bear unique signatures and capture illness-specific characteristics. The Regional Vulnerability Index (RVI) was developed to quantify brain similarity by comparing individual white matter microstructure,...

Descripción completa

Detalles Bibliográficos
Autores principales: Kochunov, Peter, Ryan, Meghann C., Yang, Qifan, Hatch, Kathryn S., Zhu, Alyssa, Thomopoulos, Sophia I., Jahanshad, Neda, Schmaal, Lianne, Thompson, Paul M., Chen, Shuo, Du, Xiaoming, Adhikari, Bhim M., Bruce, Heather, Hare, Stephanie, Goldwaser, Eric L., Kvarta, Mark D., Nichols, Thomas E., Hong, L. Elliot
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7851406/
https://www.ncbi.nlm.nih.gov/pubmed/33530016
http://dx.doi.org/10.1016/j.nicl.2021.102574
_version_ 1783645621143470080
author Kochunov, Peter
Ryan, Meghann C.
Yang, Qifan
Hatch, Kathryn S.
Zhu, Alyssa
Thomopoulos, Sophia I.
Jahanshad, Neda
Schmaal, Lianne
Thompson, Paul M.
Chen, Shuo
Du, Xiaoming
Adhikari, Bhim M.
Bruce, Heather
Hare, Stephanie
Goldwaser, Eric L.
Kvarta, Mark D.
Nichols, Thomas E.
Hong, L. Elliot
author_facet Kochunov, Peter
Ryan, Meghann C.
Yang, Qifan
Hatch, Kathryn S.
Zhu, Alyssa
Thomopoulos, Sophia I.
Jahanshad, Neda
Schmaal, Lianne
Thompson, Paul M.
Chen, Shuo
Du, Xiaoming
Adhikari, Bhim M.
Bruce, Heather
Hare, Stephanie
Goldwaser, Eric L.
Kvarta, Mark D.
Nichols, Thomas E.
Hong, L. Elliot
author_sort Kochunov, Peter
collection PubMed
description Neurological and psychiatric illnesses are associated with regional brain deficit patterns that bear unique signatures and capture illness-specific characteristics. The Regional Vulnerability Index (RVI) was developed to quantify brain similarity by comparing individual white matter microstructure, cortical gray matter thickness and subcortical gray matter structural volume measures with neuroanatomical deficit patterns derived from large-scale meta-analytic studies. We tested the specificity of the RVI approach for major depressive disorder (MDD) and Alzheimer’s disease (AD) in a large epidemiological sample of UK Biobank (UKBB) participants (N = 19,393; 9138 M/10,255F; age = 64.8 ± 7.4 years). Compared to controls free of neuropsychiatric disorders, participants with MDD (N = 2,248; 805 M/1443F; age = 63.4 ± 7.4) had significantly higher RVI-MDD values (t = 5.6, p = 1·10(−8)), but showed no detectable difference in RVI-AD (t = 2.0, p = 0.10). Subjects with dementia (N = 7; 4 M/3F; age = 68.6 ± 8.6 years) showed significant elevation in RVI-AD (t = 4.2, p = 3·10(−5)) but not RVI-MDD (t = 2.1, p = 0.10) compared to controls. Even within affective illnesses, participants with bipolar disorder (N = 54) and anxiety disorder (N = 773) showed no significant elevation in whole-brain RVI-MDD. Participants with Parkinson’s disease (N = 37) showed elevation in RVI-AD (t = 2.4, p = 0.01) while subjects with stroke (N = 247) showed no such elevation (t = 1.1, p = 0.3). In summary, we demonstrated elevation in RVI-MDD and RVI-AD measures in the respective illnesses with strong replicability that is relatively specific to the respective diagnoses. These neuroanatomic deviation patterns offer a useful biomarker for population-wide assessments of similarity to neuropsychiatric illnesses.
format Online
Article
Text
id pubmed-7851406
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-78514062021-02-05 Comparison of regional brain deficit patterns in common psychiatric and neurological disorders as revealed by big data Kochunov, Peter Ryan, Meghann C. Yang, Qifan Hatch, Kathryn S. Zhu, Alyssa Thomopoulos, Sophia I. Jahanshad, Neda Schmaal, Lianne Thompson, Paul M. Chen, Shuo Du, Xiaoming Adhikari, Bhim M. Bruce, Heather Hare, Stephanie Goldwaser, Eric L. Kvarta, Mark D. Nichols, Thomas E. Hong, L. Elliot Neuroimage Clin Regular Article Neurological and psychiatric illnesses are associated with regional brain deficit patterns that bear unique signatures and capture illness-specific characteristics. The Regional Vulnerability Index (RVI) was developed to quantify brain similarity by comparing individual white matter microstructure, cortical gray matter thickness and subcortical gray matter structural volume measures with neuroanatomical deficit patterns derived from large-scale meta-analytic studies. We tested the specificity of the RVI approach for major depressive disorder (MDD) and Alzheimer’s disease (AD) in a large epidemiological sample of UK Biobank (UKBB) participants (N = 19,393; 9138 M/10,255F; age = 64.8 ± 7.4 years). Compared to controls free of neuropsychiatric disorders, participants with MDD (N = 2,248; 805 M/1443F; age = 63.4 ± 7.4) had significantly higher RVI-MDD values (t = 5.6, p = 1·10(−8)), but showed no detectable difference in RVI-AD (t = 2.0, p = 0.10). Subjects with dementia (N = 7; 4 M/3F; age = 68.6 ± 8.6 years) showed significant elevation in RVI-AD (t = 4.2, p = 3·10(−5)) but not RVI-MDD (t = 2.1, p = 0.10) compared to controls. Even within affective illnesses, participants with bipolar disorder (N = 54) and anxiety disorder (N = 773) showed no significant elevation in whole-brain RVI-MDD. Participants with Parkinson’s disease (N = 37) showed elevation in RVI-AD (t = 2.4, p = 0.01) while subjects with stroke (N = 247) showed no such elevation (t = 1.1, p = 0.3). In summary, we demonstrated elevation in RVI-MDD and RVI-AD measures in the respective illnesses with strong replicability that is relatively specific to the respective diagnoses. These neuroanatomic deviation patterns offer a useful biomarker for population-wide assessments of similarity to neuropsychiatric illnesses. Elsevier 2021-01-26 /pmc/articles/PMC7851406/ /pubmed/33530016 http://dx.doi.org/10.1016/j.nicl.2021.102574 Text en © 2021 The Authors. Published by Elsevier Inc. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Regular Article
Kochunov, Peter
Ryan, Meghann C.
Yang, Qifan
Hatch, Kathryn S.
Zhu, Alyssa
Thomopoulos, Sophia I.
Jahanshad, Neda
Schmaal, Lianne
Thompson, Paul M.
Chen, Shuo
Du, Xiaoming
Adhikari, Bhim M.
Bruce, Heather
Hare, Stephanie
Goldwaser, Eric L.
Kvarta, Mark D.
Nichols, Thomas E.
Hong, L. Elliot
Comparison of regional brain deficit patterns in common psychiatric and neurological disorders as revealed by big data
title Comparison of regional brain deficit patterns in common psychiatric and neurological disorders as revealed by big data
title_full Comparison of regional brain deficit patterns in common psychiatric and neurological disorders as revealed by big data
title_fullStr Comparison of regional brain deficit patterns in common psychiatric and neurological disorders as revealed by big data
title_full_unstemmed Comparison of regional brain deficit patterns in common psychiatric and neurological disorders as revealed by big data
title_short Comparison of regional brain deficit patterns in common psychiatric and neurological disorders as revealed by big data
title_sort comparison of regional brain deficit patterns in common psychiatric and neurological disorders as revealed by big data
topic Regular Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7851406/
https://www.ncbi.nlm.nih.gov/pubmed/33530016
http://dx.doi.org/10.1016/j.nicl.2021.102574
work_keys_str_mv AT kochunovpeter comparisonofregionalbraindeficitpatternsincommonpsychiatricandneurologicaldisordersasrevealedbybigdata
AT ryanmeghannc comparisonofregionalbraindeficitpatternsincommonpsychiatricandneurologicaldisordersasrevealedbybigdata
AT yangqifan comparisonofregionalbraindeficitpatternsincommonpsychiatricandneurologicaldisordersasrevealedbybigdata
AT hatchkathryns comparisonofregionalbraindeficitpatternsincommonpsychiatricandneurologicaldisordersasrevealedbybigdata
AT zhualyssa comparisonofregionalbraindeficitpatternsincommonpsychiatricandneurologicaldisordersasrevealedbybigdata
AT thomopoulossophiai comparisonofregionalbraindeficitpatternsincommonpsychiatricandneurologicaldisordersasrevealedbybigdata
AT jahanshadneda comparisonofregionalbraindeficitpatternsincommonpsychiatricandneurologicaldisordersasrevealedbybigdata
AT schmaallianne comparisonofregionalbraindeficitpatternsincommonpsychiatricandneurologicaldisordersasrevealedbybigdata
AT thompsonpaulm comparisonofregionalbraindeficitpatternsincommonpsychiatricandneurologicaldisordersasrevealedbybigdata
AT chenshuo comparisonofregionalbraindeficitpatternsincommonpsychiatricandneurologicaldisordersasrevealedbybigdata
AT duxiaoming comparisonofregionalbraindeficitpatternsincommonpsychiatricandneurologicaldisordersasrevealedbybigdata
AT adhikaribhimm comparisonofregionalbraindeficitpatternsincommonpsychiatricandneurologicaldisordersasrevealedbybigdata
AT bruceheather comparisonofregionalbraindeficitpatternsincommonpsychiatricandneurologicaldisordersasrevealedbybigdata
AT harestephanie comparisonofregionalbraindeficitpatternsincommonpsychiatricandneurologicaldisordersasrevealedbybigdata
AT goldwaserericl comparisonofregionalbraindeficitpatternsincommonpsychiatricandneurologicaldisordersasrevealedbybigdata
AT kvartamarkd comparisonofregionalbraindeficitpatternsincommonpsychiatricandneurologicaldisordersasrevealedbybigdata
AT nicholsthomase comparisonofregionalbraindeficitpatternsincommonpsychiatricandneurologicaldisordersasrevealedbybigdata
AT honglelliot comparisonofregionalbraindeficitpatternsincommonpsychiatricandneurologicaldisordersasrevealedbybigdata