Cargando…
FTO modifies the m6A level of MALAT and promotes bladder cancer progression
BACKGROUND: Nearly a half million people around the world are diagnosed with bladder cancer each year, and an incomplete understanding of its pathogenicity and lack of efficient biomarkers having been discovered lead to poor clinical management of bladder cancer. Fat mass and obesity‐associated prot...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7851431/ https://www.ncbi.nlm.nih.gov/pubmed/33634966 http://dx.doi.org/10.1002/ctm2.310 |
_version_ | 1783645627276591104 |
---|---|
author | Tao, Le Mu, Xingyu Chen, Haige Jin, Di Zhang, Ruiyun Zhao, Yuyang Fan, Jie Cao, Ming Zhou, Zhihua |
author_facet | Tao, Le Mu, Xingyu Chen, Haige Jin, Di Zhang, Ruiyun Zhao, Yuyang Fan, Jie Cao, Ming Zhou, Zhihua |
author_sort | Tao, Le |
collection | PubMed |
description | BACKGROUND: Nearly a half million people around the world are diagnosed with bladder cancer each year, and an incomplete understanding of its pathogenicity and lack of efficient biomarkers having been discovered lead to poor clinical management of bladder cancer. Fat mass and obesity‐associated protein (FTO) is a critical player in carcinogenesis. We, here, explored the role of FTO and unraveled the mechanism of its function in bladder cancer. METHODS: Identification of the correlation of FTO with bladder cancer was based on both bioinformatics and clinical analysis of tissue samples collected from a cohort of patients at a hospital and microarray data. Gain‐of‐function and loss‐of‐function assays were conducted in vivo and in vitro to assess the effect of FTO on bladder carcinoma tumor growth and its impact on the bladder carcinoma cell viability. Moreover, the interactions of intermediate products were also investigated to elucidate the mechanisms of FTO function. RESULTS: Bladder tumor tissues had increased FTO expression which correlated with clinical bladder cancer prognosis and outcomes. Both in vivo and in vitro, it played the function of an oncogene in stimulating the cell viability and tumorigenicity of bladder cancer. Furthermore, FTO catalyzed metastasis‐associated lung adenocarcinoma transcript 1 (MALAT1) demethylation, regulated microRNA miR‐384 and mal T cell differentiation protein 2 (MAL2) expression, and modulated the interactions among these processes. CONCLUSIONS: The interplay of these four clinically relevant factors contributes to the oncogenesis of bladder cancer. FTO facilitates the tumorigenesis of bladder cancer through regulating the MALAT/miR‐384/MAL2 axis in m6A RNA modification manner, which ensures the potential of FTO for serving as a diagnostic or prognostic biomarker in bladder cancer. |
format | Online Article Text |
id | pubmed-7851431 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-78514312021-02-05 FTO modifies the m6A level of MALAT and promotes bladder cancer progression Tao, Le Mu, Xingyu Chen, Haige Jin, Di Zhang, Ruiyun Zhao, Yuyang Fan, Jie Cao, Ming Zhou, Zhihua Clin Transl Med Research Articles BACKGROUND: Nearly a half million people around the world are diagnosed with bladder cancer each year, and an incomplete understanding of its pathogenicity and lack of efficient biomarkers having been discovered lead to poor clinical management of bladder cancer. Fat mass and obesity‐associated protein (FTO) is a critical player in carcinogenesis. We, here, explored the role of FTO and unraveled the mechanism of its function in bladder cancer. METHODS: Identification of the correlation of FTO with bladder cancer was based on both bioinformatics and clinical analysis of tissue samples collected from a cohort of patients at a hospital and microarray data. Gain‐of‐function and loss‐of‐function assays were conducted in vivo and in vitro to assess the effect of FTO on bladder carcinoma tumor growth and its impact on the bladder carcinoma cell viability. Moreover, the interactions of intermediate products were also investigated to elucidate the mechanisms of FTO function. RESULTS: Bladder tumor tissues had increased FTO expression which correlated with clinical bladder cancer prognosis and outcomes. Both in vivo and in vitro, it played the function of an oncogene in stimulating the cell viability and tumorigenicity of bladder cancer. Furthermore, FTO catalyzed metastasis‐associated lung adenocarcinoma transcript 1 (MALAT1) demethylation, regulated microRNA miR‐384 and mal T cell differentiation protein 2 (MAL2) expression, and modulated the interactions among these processes. CONCLUSIONS: The interplay of these four clinically relevant factors contributes to the oncogenesis of bladder cancer. FTO facilitates the tumorigenesis of bladder cancer through regulating the MALAT/miR‐384/MAL2 axis in m6A RNA modification manner, which ensures the potential of FTO for serving as a diagnostic or prognostic biomarker in bladder cancer. John Wiley and Sons Inc. 2021-02-01 /pmc/articles/PMC7851431/ /pubmed/33634966 http://dx.doi.org/10.1002/ctm2.310 Text en © 2021 The Authors. Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Tao, Le Mu, Xingyu Chen, Haige Jin, Di Zhang, Ruiyun Zhao, Yuyang Fan, Jie Cao, Ming Zhou, Zhihua FTO modifies the m6A level of MALAT and promotes bladder cancer progression |
title | FTO modifies the m6A level of MALAT and promotes bladder cancer progression |
title_full | FTO modifies the m6A level of MALAT and promotes bladder cancer progression |
title_fullStr | FTO modifies the m6A level of MALAT and promotes bladder cancer progression |
title_full_unstemmed | FTO modifies the m6A level of MALAT and promotes bladder cancer progression |
title_short | FTO modifies the m6A level of MALAT and promotes bladder cancer progression |
title_sort | fto modifies the m6a level of malat and promotes bladder cancer progression |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7851431/ https://www.ncbi.nlm.nih.gov/pubmed/33634966 http://dx.doi.org/10.1002/ctm2.310 |
work_keys_str_mv | AT taole ftomodifiesthem6alevelofmalatandpromotesbladdercancerprogression AT muxingyu ftomodifiesthem6alevelofmalatandpromotesbladdercancerprogression AT chenhaige ftomodifiesthem6alevelofmalatandpromotesbladdercancerprogression AT jindi ftomodifiesthem6alevelofmalatandpromotesbladdercancerprogression AT zhangruiyun ftomodifiesthem6alevelofmalatandpromotesbladdercancerprogression AT zhaoyuyang ftomodifiesthem6alevelofmalatandpromotesbladdercancerprogression AT fanjie ftomodifiesthem6alevelofmalatandpromotesbladdercancerprogression AT caoming ftomodifiesthem6alevelofmalatandpromotesbladdercancerprogression AT zhouzhihua ftomodifiesthem6alevelofmalatandpromotesbladdercancerprogression |