Cargando…
SLC35A2-CDG: Novel variant and review
SLC35A2 encodes the X-linked transporter that carries uridine diphosphate (UDP)-galactose from the cytosol to the lumen of the Golgi apparatus and the endoplasmic reticulum. Pathogenic variants have been associated to a congenital disorder of glycosylation (CDG) with epileptic encephalopathy as a pr...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7851840/ https://www.ncbi.nlm.nih.gov/pubmed/33552911 http://dx.doi.org/10.1016/j.ymgmr.2021.100717 |
Sumario: | SLC35A2 encodes the X-linked transporter that carries uridine diphosphate (UDP)-galactose from the cytosol to the lumen of the Golgi apparatus and the endoplasmic reticulum. Pathogenic variants have been associated to a congenital disorder of glycosylation (CDG) with epileptic encephalopathy as a predominant feature. Among the sixty five patients described so far, a strong gender bias is observed as only seven patients are males. This work is a review and reports a SLC35A2-CDG in a male without epilepsy and with growth deficiency associated with decreased serum IGF1, minor neurological involvement, minor facial dysmorphism, and camptodactyly of fingers and toes. Sequence analysis revealed a hemizygosity for a novel de novo variant: c.233A > G (p.Lys78Arg) in SLC35A2. Further analysis of SLC35A2 sequence by comparing both orthologous and paralogous positions, revealed that not only the variant found in this study, but also most of the reported mutated positions are conserved in SLC35A2 orthologous, and many even in the paralogous SLC35A1 and SLC35A3. This is strong evidence that replacements at these positions will have a critical pathological effect and may also explain the gender bias observed among SLC35A2-CDG patients. |
---|