Cargando…
Insight of transcriptional regulators reveals the tolerance mechanism of carpet-grass (Axonopus compressus) against drought
BACKGROUND: Carpet grass [Axonopus compressus (L.)] is an important warm-season perennial grass around the world and is known for its adaptability to varied environmental conditions. However, Carpet grass lacks enough data in public data banks, which confined our comprehension of the mechanisms of e...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7851936/ https://www.ncbi.nlm.nih.gov/pubmed/33530948 http://dx.doi.org/10.1186/s12870-021-02844-7 |
_version_ | 1783645720059838464 |
---|---|
author | Nawaz, Mohsin Li, Liao Azeem, Farrukh Shabbir, Samina Zohaib, Ali Ashraf, Umair Yang, Hubiao Wang, Zhiyong |
author_facet | Nawaz, Mohsin Li, Liao Azeem, Farrukh Shabbir, Samina Zohaib, Ali Ashraf, Umair Yang, Hubiao Wang, Zhiyong |
author_sort | Nawaz, Mohsin |
collection | PubMed |
description | BACKGROUND: Carpet grass [Axonopus compressus (L.)] is an important warm-season perennial grass around the world and is known for its adaptability to varied environmental conditions. However, Carpet grass lacks enough data in public data banks, which confined our comprehension of the mechanisms of environmental adaptations, gene discovery, and development of molecular markers. In current study, the DEGs (differentially expressed genes) in Axonopus compressus under drought stress (DS) were identified and compared with CK (control) by RNA-Seq. RESULTS: A total of 263,835 unigenes were identified in Axonopus compressus, and 201,303 (also added to the numbers of the remaining 2 databases) a sequence of unigenes significantly matched in at least one of the seven databases. A total of 153,697 (58.25%) unigenes classified to 144 KEGG pathways, and 7444 unigenes were expressed differentially between DS and CK, of which 4249 were up-regulated and 3195 were down-regulated unigenes. Of the 50 significantly enriched GO terms, 18, 6, and 14 items were related to BP, CC, and MF respectively. Analysis of KEGG enrichment revealed 2569 DEGs involved in 143 different pathways, under drought stress. 2747 DEGs were up-regulated and 2502 DEGs were down-regulated. Moreover, we identified 352 transcription factors (TFs) in Axonopus compressus, of which 270 were differentially expressed between CK and DS. The qRT-PCR validation experiment also supports the transcriptional response of Axonopus compressus against drought. Accuracy of transcriptome unigenes of Axonopus compressus was assessed with BLAST, which showed 3300 sequences of Axonopus compressus in the NCBI. CONCLUSION: The 7444 unigenes were found to be between DS and CK treatments, which indicate the existence of a strong mechanism of drought tolerance in Axonopus compressus. The current findings provide the first framework for further investigations for the particular roles of these unigenes in Axonopus compressus in response to drought. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12870-021-02844-7. |
format | Online Article Text |
id | pubmed-7851936 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-78519362021-02-03 Insight of transcriptional regulators reveals the tolerance mechanism of carpet-grass (Axonopus compressus) against drought Nawaz, Mohsin Li, Liao Azeem, Farrukh Shabbir, Samina Zohaib, Ali Ashraf, Umair Yang, Hubiao Wang, Zhiyong BMC Plant Biol Research Article BACKGROUND: Carpet grass [Axonopus compressus (L.)] is an important warm-season perennial grass around the world and is known for its adaptability to varied environmental conditions. However, Carpet grass lacks enough data in public data banks, which confined our comprehension of the mechanisms of environmental adaptations, gene discovery, and development of molecular markers. In current study, the DEGs (differentially expressed genes) in Axonopus compressus under drought stress (DS) were identified and compared with CK (control) by RNA-Seq. RESULTS: A total of 263,835 unigenes were identified in Axonopus compressus, and 201,303 (also added to the numbers of the remaining 2 databases) a sequence of unigenes significantly matched in at least one of the seven databases. A total of 153,697 (58.25%) unigenes classified to 144 KEGG pathways, and 7444 unigenes were expressed differentially between DS and CK, of which 4249 were up-regulated and 3195 were down-regulated unigenes. Of the 50 significantly enriched GO terms, 18, 6, and 14 items were related to BP, CC, and MF respectively. Analysis of KEGG enrichment revealed 2569 DEGs involved in 143 different pathways, under drought stress. 2747 DEGs were up-regulated and 2502 DEGs were down-regulated. Moreover, we identified 352 transcription factors (TFs) in Axonopus compressus, of which 270 were differentially expressed between CK and DS. The qRT-PCR validation experiment also supports the transcriptional response of Axonopus compressus against drought. Accuracy of transcriptome unigenes of Axonopus compressus was assessed with BLAST, which showed 3300 sequences of Axonopus compressus in the NCBI. CONCLUSION: The 7444 unigenes were found to be between DS and CK treatments, which indicate the existence of a strong mechanism of drought tolerance in Axonopus compressus. The current findings provide the first framework for further investigations for the particular roles of these unigenes in Axonopus compressus in response to drought. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12870-021-02844-7. BioMed Central 2021-02-02 /pmc/articles/PMC7851936/ /pubmed/33530948 http://dx.doi.org/10.1186/s12870-021-02844-7 Text en © The Author(s) 2021 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Article Nawaz, Mohsin Li, Liao Azeem, Farrukh Shabbir, Samina Zohaib, Ali Ashraf, Umair Yang, Hubiao Wang, Zhiyong Insight of transcriptional regulators reveals the tolerance mechanism of carpet-grass (Axonopus compressus) against drought |
title | Insight of transcriptional regulators reveals the tolerance mechanism of carpet-grass (Axonopus compressus) against drought |
title_full | Insight of transcriptional regulators reveals the tolerance mechanism of carpet-grass (Axonopus compressus) against drought |
title_fullStr | Insight of transcriptional regulators reveals the tolerance mechanism of carpet-grass (Axonopus compressus) against drought |
title_full_unstemmed | Insight of transcriptional regulators reveals the tolerance mechanism of carpet-grass (Axonopus compressus) against drought |
title_short | Insight of transcriptional regulators reveals the tolerance mechanism of carpet-grass (Axonopus compressus) against drought |
title_sort | insight of transcriptional regulators reveals the tolerance mechanism of carpet-grass (axonopus compressus) against drought |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7851936/ https://www.ncbi.nlm.nih.gov/pubmed/33530948 http://dx.doi.org/10.1186/s12870-021-02844-7 |
work_keys_str_mv | AT nawazmohsin insightoftranscriptionalregulatorsrevealsthetolerancemechanismofcarpetgrassaxonopuscompressusagainstdrought AT liliao insightoftranscriptionalregulatorsrevealsthetolerancemechanismofcarpetgrassaxonopuscompressusagainstdrought AT azeemfarrukh insightoftranscriptionalregulatorsrevealsthetolerancemechanismofcarpetgrassaxonopuscompressusagainstdrought AT shabbirsamina insightoftranscriptionalregulatorsrevealsthetolerancemechanismofcarpetgrassaxonopuscompressusagainstdrought AT zohaibali insightoftranscriptionalregulatorsrevealsthetolerancemechanismofcarpetgrassaxonopuscompressusagainstdrought AT ashrafumair insightoftranscriptionalregulatorsrevealsthetolerancemechanismofcarpetgrassaxonopuscompressusagainstdrought AT yanghubiao insightoftranscriptionalregulatorsrevealsthetolerancemechanismofcarpetgrassaxonopuscompressusagainstdrought AT wangzhiyong insightoftranscriptionalregulatorsrevealsthetolerancemechanismofcarpetgrassaxonopuscompressusagainstdrought |